Other publications by Jean-Christophe Nebel
|
M. Lewandowski, D. Makris and J.-C. Nebel
European Conference on Computer Vision (ECCV 2010)
September 5-11, Crete, Greece, 2010
[PDF]
Abstract
We introduce a novel approach to automatically learn intuitive and compact descriptors of human body motions for activity recognition. Each action descriptor is produced,first, by applying Temporal Laplacian Eigenmaps to view-dependent videos in order to produce a stylistic invariant embedded manifold for each view separately. Then, all view-dependent manifolds are automatically combined to discover a unified representation which model in a single three dimensional space an action independently from style and viewpoint. In addition, a bidirectional nonlinear mapping function is incorporated to allow projecting actions between original and embedded spaces. The proposed framework is evaluated on a real and challenging dataset (IXMAS), which is composed of a variety of actions seen from arbitrary viewpoints. Experimental results demonstrate robustness against style and view variation and match the most accurate action recognition method.
Cited by ( Google Scholar: 41, ISI Web of Knowledge: 21 & SCOPUS: 22 ): 48
2022