Other publications by Jean-Christophe Nebel
|
A. Ryan, E. Kaplan, J.-C. Nebel, E. Polycarpou, V. Crescente, E. Lowe, G. Preston & E. Sim
PLOS ONE
10.1371/journal.pone.0098551, 2014
[PDF]
Abstract
Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to
pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes
known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same
organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence
amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad
substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.
Cited by ( Google Scholar: 54, ISI Web of Knowledge: 33 & SCOPUS: 28 ): 61
2024