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Abstract— In this paper, we address the recovery of human 2D postures from monocular image 

sequences. We propose a novel pose estimation framework which is based on the integration of 

probabilistic bottom-up and top-down processes which iteratively refine each other: foreground 

pixels are segmented using image cues whereas a hierarchical 2D body model fitting constraints 

body partitions. Its main advantages are two-fold. First, the presented framework is 

activity-independent since it does not rely on learning any motion model. Secondly, we propose a 

confidence score indicating the quality of each estimated pose. Our study also reveals significant 

discrepancy between ground truth joint positions according to whether they are defined by humans 

or a motion capture system. Quantitative and qualitative results are presented on a variety of video 

sequences to validate our approach. 

 

Index Terms— Human body pose estimation, stochastic clustering, Gaussian mixture modelling, 

pattern classification, object recognition, confidence measure, ground truth. 

 

1. INTRODUCTION 

Human pose recovery from a monocular camera is an important and challenging task in computer vision. 

Such research aims at allowing analysis of body postures for a range of applications from the study of 

athletes’ performances during competitions to the detection of antisocial behaviours on images captured 
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from CCTV cameras. A robust system should be able to deal with the complexity of human poses, 

including self-occlusions, and observation variations due to different clothing, lighting and camera 

viewpoints. So far, techniques have only been proposed for constrained scenarios focusing on specific 

activities within a controlled environment.  Therefore, a general solution remains an active research topic 

in computer vision.  

The goal of pose recovery can be defined as the localisation of a person’s joints and limbs in either an 

image plane (2D recovery) or a world space (3D recovery), which usually results in the reconstruction of a 

human skeleton. In this work, we concentrate on 2D pose recovery as it is the corner-stone of human motion 

analysis. For example, a sequence of 2D postures can be used for the study of linear gait [1]. It is also an 

essential step towards 3D pose recovery [2], which could be achieved, for example, by integrating camera 

self-calibration techniques [3][4]. The success of pose recovery is usually measured according to the 

accuracy of estimates of joint positions. However, we must accept some poses cannot be recovered using a 

single camera because of self-occlusions or certain view-points make this task impossible. Therefore, a 

robust pose recovery system should be able to evaluate the accuracy of joint estimates to recognise those 

difficult postures. 

In this paper, we propose a novel probabilistic bottom-up/top-down approach for 2D pose recovery. The 

bottom-up module uses clustering technique to segment body parts from foreground pixels by integrating 

multiple image cues which consist of low-level image features (i.e. location, colour, edge orientation and 

optical flow) and advanced descriptors (haar-based adaboost responses, SIFT correspondences and omega 

model values). Clustering is driven by the top-down module of fitting a 2D human body model to obtain 

optimal segmentation. 

The strength of our method is, unlike many state-of-the-art approaches, that it does not require any 

training stage, as body part characteristics can be extracted using selected image cues. This makes our pose 

recovery authentically activity-independent and, therefore, able to recover unusual poses. Since a key 

application of our technique is the initialisation of human body trackers, a probabilistic confidence 
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measure is produced for each estimated pose so that initialisations could be performed only when postures 

are recovered with high confidence.  

Another contribution of this paper is a statistical comparison of posture ground truths produced by either 

humans or a motion capture system. We identify a significant difference that needs to be taken into account 

when evaluating a training free method like ours.  

The structure of this paper is as follows. After presenting related previous work, an overview of our 

framework is given. Detail discussion of the top-down module, the bottom-up module, and integration of 

these two modules are presented respectively in Section 2, 3 and 4. In Section 5, the probabilistic 

confidence measure for recovered poses is introduced. Quantitative and qualitative pose recovery results 

are discussed in Section 6. Finally conclusions and future work are addressed in Section 7.  

1.1. Related Work 

Human pose estimation has become one of the most active research topics in computer vision over the 

past decade. [5] [6] and [7] provides extensive surveys of human motion tracking and analysis methods, 

and a more recent review is available in [8]. In the broadest taxonomy, pose recovery algorithms can be 

divided into learning based or activity independent approaches depending whether training of either poses 

or observations is required. Pose recovery algorithms are also traditionally classified into top-down 

(model-based) and bottom-up (model-free) strategies.  

In learning-based approaches, poses are estimated using either generative [9][10][11][12] or 

discriminative [13][14][15] approaches. Generative approaches use Bayesian rule to infer the pose 

configuration from learned state space to produce optimal image alignment to the observation, whereas 

discriminative approaches learn direct mapping functions from the visual observation to the pose 

configuration. 

Whatever the approach, the main difficulty lies in the high dimensionality of the pose space. To tackle 

this, dimensionality reduction methods, such as Principal Component Analysis [16][17], Isomaps 

[18][10][9], Laplacian Eigenspace [19][11], Gaussian Process Latent Variable Model (GPLVM) 
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[20][21][9], Local Linear Embedding [22][10][23][9] and Diffusing map [24] have been investigated. In 

[23], view-dependent activity manifolds of human silhouettes and mapping function between the manifolds 

and 3D pose space were learned. Thus, a 3D pose can be recovered by projecting the visual input to the 

manifold and mapping to the learned 3D pose space. Instead of learning from image evidence, [21] learnt 

postures and motion dynamics, and embedded them in a low dimensional space using GPLVM. More 

recently in [9][10], both pose configuration and visual observation manifolds have been constructed so that 

generative pose inference can be performed more efficiently within the two low dimensional spaces. 

A successful pose recovery algorithm also requires an efficient search strategy. The most popular ones 

include dynamic programming [25][26], Markov Chain [27][28], particle filtering [29][30][31], genetic 

algorithm [32] and Simulated Annealing [29][30][32]. In addition in [11], 3D voxel data is projected to a 

Laplacian Eigenspace so that nodes of body parts become discriminative. This allows body part search to 

be performed in a much smaller anthropometric-constrained space and removes part ambiguity. Howe’s 

[27] silhouette-pose lookup approach is able to select a set of possible poses based on the given input 

silhouette. Then Markov chains modelling the temporal dependency of human motion are exploited to 

determine the most likely chain of pose sequences. [12] presents a top-down generative approach using a 

3D physics-based motion prior so that searching of poses is constrained effectively among physically 

plausible hypotheses. [32] introduces an advanced search framework using stratified anneal genetic 

algorithm for poser recovery and tracking.  

Most discriminative approaches [13][14][15] use nonlinear regression techniques to learn the mapping 

between pose configuration and visual observation. In [13] Bayesian mixture of experts with density 

propagation is used for learning and inferring poses. As a result of a comparison between a variety of 

regression methods including ridge regression, Relevance Vector Machine (RVM) regression, and Support 

Vector Machine, it was suggested RVM gives the best performance [14]. 

The main disadvantage of learning-based methods is their dependency on the training dataset, i.e. they 

can generally only recover poses belonging to a single activity and/or a specific actor. [15] proposed using 
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a mixture Gaussian Process kernel to handle efficiently very large training sets in order to be able to learn 

and infer several activities. However, under this scheme, results are only demonstrated for a unique actor. 

Activity independent pose recovery algorithms exploit inherent human body characteristics which are 

present in the image, that are usually represented by low-level and mid-level image cues such as colour/skin 

[33][34], face [33], shape [35], optical flow [36][37], edge orientation [36][34] [38], and static foot point 

[39][2]. Since each individual cue is usually weak, cue combination is performed by either boosting [40] or 

clustering [34][36]. For example, [34] created a 30 dimensional feature vector from edge orientation and 

colour for body part clustering. In [36] the pose is estimated hierarchically; head and torso were located 

using separate cues and limbs are found by clustering feature vectors consisting of pixel locality, edge 

orientation, colour and optical flow. 

These bottom-up methods usually apply geometric rules to filter out impossible pose candidates found 

using image cues. In [38], an edge map is computed by dividing edges in segments which are refined by 

constrained Delaunay triangulation. Then part candidates are identified by paring parallel lines according 

to anthropometric constraints. [25][35] assemble shape pieces found from Normalised Cut to form a 

holistic human body using a predefined parsing rules. However, these bottom-up approaches are prone to 

noise, unless they receive feedback by top-down process as demonstrated in [11] and [34]. 

Our proposed method allows estimating poses independently from the type of human activity. The 

method consolidates both bottom-up and top-down pose recovery strategies so that strengths of top-down 

and bottom-up approaches can be combined, i.e. effectiveness of defining body structure and pose 

constraints, and accurate segmentation of individual body pieces respectively. Compared to [34] and [38], 

our bottom-up process uses a comprehensive set of  image cues including pixel locality, edge orientation, 

optical flow and colour so that body parts can be segmented in many difficult scenarios where some cues 

are indiscriminative. Unlike [11] and [34] which combined the top-down/bottom-up sequentially, the main 

contribution of the proposed framework is to connect the top-down and bottom-up processes using a closed 

loop thus body model configuration and body part segmentation can be iteratively refined. The estimated 
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pose can then be derived from the body model when the configuration reaches a steady-state. In addition, 

each generated pose is assessed by a confidence score to quantify the accuracy of the pose recovery 

process. 

1.2. Framework of Our Approach 

The main characteristic of our algorithm lies in the integration of bottom-up and top-down approaches 

using probabilistic Gaussian modelling. The bottom-up module partitions the foreground area into body 

parts using a probabilistic clustering algorithm according to relevant image cues. The top-down module 

adapts dynamically a generic 2D body model to “fit” the segmented body parts by maximising a 

probabilistic objective function. The purpose of this is to impose anthropometric constraints to the 

segmented body parts. Our methodology does not require training and thus is activity-independent. 

Moreover, since poses are estimated probabilistically, a confidence score is generated to evaluate the 

success of pose estimation. 

 

Figure 1  Flow diagram of the proposed pose recovery algorithm 

As illustrated in Figure 1, our algorithm takes a video containing a moving human character as an input and 

generates for each frame a 2D skeleton with a confidence measure. The system iterates the processes of 

bottom-up and top-down pose recovery, i.e. body part clustering and body model fitting respectively. A 
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set of image cues describing body part characteristics are extracted from the input and used in the 

bottom-up module to probabilistically partition foreground pixels into a desired number of body pieces 

(section 3). The top-down module fits a 2D generic human body model onto the produced clusters by 

dynamically adjusting its scale, limb ratios and articulated configuration (section 2). In order to integrate 

the two main modules, a number of auxiliary modules are introduced. A module converting the fitted body 

model to a set of Gaussian distributions that embeds anthropometric constraints enforces body partitions 

(obtained from the clustering) to form a plausible human posture (section 4). After clustering, confidence 

scores is calculated by considering joint probabilities between the fitted body model and the body part 

partitions. This facilitates body part registration to the clusters, body joint extraction and thus updating the 

body model (section 5). The successions of clustering and model fitting processes iterate until the 

configuration of the fitted body model reaches a steady-state. Finally, a 2D skeleton representing the 

recovered 2D pose is generated with a confidence measure which expresses the expected quality of the 

pose recovery process. 

2. TOP-DOWN MODULE 

The aim of this module is to initialise the bottom-up process by providing Gaussian mixtures where 

anthropometric constraints are implicitly embedded. It starts with fitting a body model to body part 

partitions and transfers the body model to Gaussian mixtures. Although the probabilistic modelling of body 

parts using Gaussians has been adopted by other groups [41][42], our integration of the top down/bottom 

up approaches allows optimising iteratively this process within a single frame. Two types of fully 

configurable body models are fitted separately and evaluated using confidence measures to choose the 

optimal model. In this section, the human body models are introduced. Then, this is followed by the detail 

description of the hierarchical fitting steps which include head, torso and limb fitting. Finally, conversion 

of the fitted body model to Gaussian mixtures is explained.  
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2.1. Human Body Model 

In this work, a human body is defined as a kinematic chain of body parts. We represent this articulated 

structure using 2D generic configurable models, which can adopt any human posture. In order to be able to 

deal with any informative camera view1, each element of the model (body part template) can be scaled 

independently so that alteration of body part ratios due to perspective can be represented on a 2D model. 

Moreover, since self-occlusion of an arm by the torso is very common and can last for many consecutive 

frames, this situation is specifically addressed in our framework. We employ two body models, full and 

profile models as shown in Figure 2, to process our data. As shown in our experiments (Section 6), most 

human poses can be represented by one of the two models: the selection of the more appropriate one is 

achieved by comparing their associated confidence scores. In the few cases, where none of the models is 

suitable, their poor confidence scores indicate the poses cannot be recovered. Apart from the torso which is 

modelled with a rectangle, all other body pieces of the body model are initially constructed using ellipses 

and standard human body ratios [43]. The difference between full and profile models is the number of 

pieces modelling human postures and some anthropometric constraints. As shown in Figure 2, the profile 

model has only one arm: this allows dealing with views, where the torso, which is the largest body piece, 

occludes one arm. Furthermore, models are associated with different anthropometric constraints, as listed 

in Table 1. 

 

(a)                                                                       (b) 



 9

Figure 2: (a) Full body model and corresponding pose. (b) Profile body model and corresponding pose. 

Note that self-occlusion of the far arm (marked as dashed ellipses) is addressed by using the profile 

template, which only models one arm  

 
common 

constraints 

applied to both 

models 

Head, upper arms and legs are connected to the torso 

Upper and lower pieces of each limb are connected tip-to-tip 

Head perimeter touches the midpoint of the torso's upper boundary 

specific  

constraints 

applied to either 

full or profile 

model 

Full 

model 

The connecting vertex of the upper left/right arm to the torso has 3 DOFs, i.e. planar rotation, 

V- and H- translation around the upper left/right corner of the torso 

The connecting vertex of the upper left/right leg to the torso has 2 DOFs, i.e. planar rotation 

and H- translation inwards from the lower left/right corners of the torso 

Profile 

model 

The connecting vertex of the upper arm to the torso have 3 DOFs, i.e. planar rotation, V- and 

H- translation around the midpoint of the torso upper boundary  

The connecting vertex of the upper left/right leg to the torso have 3 DOFs, i.e. planar 

rotation, V- and H- translation around the midpoint of the torso lower boundary 

DOF, H- and V- denote Degree of freedom, Horizontal and Vertical. 

Table 1: Common and specific anthropometric constraints used in full and profile models. 

 

2.2. Head Detection 

The first step of body model fitting is the detection and localisation of the head. The distinct shape of the 

head and abundant features which can be extracted from the face, if visible, makes it the most reliable body 

part to identify. To ensure robust detection of this critical body part in our framework, we propose a fusion 

of “Ω” model head detection [44], AdaBoost face detection [45], and SIFT [46] head tracking (Figure 3). 

The “Ω” model detects the head by considering its unique shape, while Adaboost adds face information, if 

visible, to boost the head detection. Furthermore, SIFT exploits temporal consistency of detection of the 

                                                                                                                                                                                           
1 We define an informative camera view as a view where, for a majority of poses, most body parts are not 

self occluded. For example, a top view is not informative, while a side view is. 
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head between successive frames to suppress false alarms.   
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Figure 3: Pipeline for head detection and localization 

 

For a given frame ft, head and face, if relevant, are detected using estimates provided by “Ω” model [44] 

and AdaBoost [45] algorithm as implemented in OpenCV [47]. However, instead of using specific 

detection thresholds, we adapted these algorithms to obtain normalised distributions of head position and 

size. Let us denote the distribution of “Ω” model detection and AdaBoost detection as ω(pi) and AB(pi) 

respectively, while pi =(xi, yi) denotes pixel coordinates. Since distributions are normalised and only pixels 

belonging to the foreground area are considered, ω(pi), AB(pi) and pi are defined as follows: 

]1,0[)(

]1,0[)(

∈
∈

i

i

pAB

pω
 

Λ∈∀ ip  

where Λ denotes the set of foreground pixels. A combined distribution of ω(pi), AB(pi) and the SIFT 

transferred distribution, η(pi), from the previous frame (which is described below) is then generated by 

normalising the sum of the three distributions. Since points with high values indicate good confidence in 

the presence of the head, they are used to improve head detection in the subsequent frame. We introduce a 

SIFT-based framework to map these points between the current frame, ft and the next frame ft+1. Since SIFT 

(1) 
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performs discrete mapping, confidence associated with the transferred points is interpolated to produce a 

continuous distribution (see next paragraph). This distribution will be integrated to the other head detection 

distributions, i.e. ω(pi) and AB(pi), of the next frame.  

In the current frame ft, we extract N points (N=25 in the experiment), Ps∈ {(xs
n  , ys

n)}, n=[1..N] , 

corresponding to the N highest confidence values (sn) in the current distribution and apply SIFT match [46] 

to relate the current samples to the next frame. SIFT is able to detect features points around the current 

samples and match them to the next frame so that the current samples, Ps, can be relocated to new positions 

Ps’

 

∈  {(xs’
n, y

s’
n)}, n=[1..N] , in the next frame, as shown in Equation 2. Assuming the total number of SIFT 

feature points detected around each current sample is Nall
n, and the number of SIFT features matched in the 

next frame is Nhit
n, we design a transfer function, as defined in Equation 3 (a=0.25 in the experiment), to 

convey sample scores from the current frame to the next frame.  

Then a new distribution is generated from the relocated samples. A Gaussian kernel (Equation 4) is used 

to expand the samples to N Gaussian distributions and then mix them using the weighting factors of s’n to 

generate the resultant distribution, η(pi). In Equation 4, COV denotes the covariance matrix controlling 

expansion of the relocated samples and is proportional to the size of the foreground area |Λ|, as indicated in 

Equation 5. As an isometric Gaussian kernel is used to convert a scalar value to a probability density 

function, a diagonal matrix is used in Equation 5. C is a constant (0.01 in the experiment). η(pi) is then 

incorporated with the AdaBoost and “Ω” distributions of the frame, ft+1, by normalising the sum of the three 

distributions to produce a combined distribution that will subsequently be sampled, matched, expanded and 

transferred to the following frame ft+2. For each frame, the centre of the head is defined by the point having 

the highest score in the combined distribution and its size is calculated as the weighted average size of 

detected head from the “Ω” model, AdaBoost and from the previous samples transferred by SIFT. For the 

initial frame (f0), only two distributions, ω(pi) and AB(pi), are combined as η(pi) is not yet available. 
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This head detection algorithm has been tested in a variety of sequences, see section 6, showing it can be 

initialised for a wide range of head orientations as illustrated on Figure 4. 

    

Figure 4: Results of head detection from various head orientations.  

The circle and its centre (both in blue) indicate the size and centre of the head. 

 

2.3. Detection of Torso Region 

The torso region is detected by modelling a sample of torso colours using Gaussian Mixture Modelling 

(GMM) as previously used in [48][49][50]. First, “rectangular sampling regions” are created around the 

position of the head, which has been previously detected (see Figure 5). The area of these regions is set to 

50% of the expected torso size, which is estimated using a standard body ratio [43], head size and 

foreground height. Since the torso must belong to the foreground, the number of relevant sampling regions 

is small (usually 2 or 3, see Figure 5). For each sampling region, a GMM composed of 3 mixtures is 

(4) 

(3) 

(5) 
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estimated by using RGB colour of foreground pixels drawn from the sampling region. A statistical model is 

used to reject colour outliers [49]. Then for each sampling region, torso pixel candidates are detected from 

the foreground by using the trained GMM classifiers. Finally, sizes of detected candidate regions are 

compared to the expected torso size to select the most likely torso region [50]. Figure 6(a) shows a torso 

region extracted using the torso region detection procedure. 

 

 
Figure 5: Torso sampling regions (dashed rectangles) defined around the head. Only two rectangular 

regions (marked in red) are considered because they contain a sufficient number of foreground pixels. 

 

2.4. Body Model Fitting 

      

(a)           (b)           (c)           (d)            (e) 

Figure 6: Stages of body model fitting 

 
The aim of body model fitting is to initialise the bottom-up pose recovery module (see Figure 1) by 

providing anthropometric constraints. Two 2D body models, full and profile models, introduced in Section 
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2.1, are fitted separately onto the probabilistically partitioned foreground pixels by maximising joint 

probabilities between the models and partitions. Since the two models bear different anthropometric 

constraints, model fitting results in two different confidence scores which allow for selection of the better 

model. The fitting is hierarchical, where the most reliable parts are fitted first, i.e. head and torso, and are 

used as references for fitting the limbs. This process is performed iteratively with an increasingly refined 

2D model whose limb templates are resized independently to accommodate perspective effect according to 

the result of the bottom-up process (see Sections 4.3 and 4.4). During the first iteration, where the 

foreground partitions are not provided, generic models are fitted to the foreground by maximising the 

overlapping area. 

 The head is fitted with a circular template with the size and location found in Section 2.2. Since the 

detected torso region is only based on colour features (Section 2.3), this region may comprise some pixels 

which do not belong to the torso, e.g. sleeves on Figure 6(a). In addition, torso coverage may not be 

complete. Therefore, the definition of the torso is refined using a new constraint: a rectangular shape is 

fitted on the detected torso region adjusting position, orientation, scale and height/width ratio. This is 

achieved by maximising the overlap between pixels belonging to the rectangular shape and detected pixels 

of the torso region:  

torsotorso

torsotorso

pixelm

pixelm

AA

AA
Overlap

I
=  

where 
torsomA and 

torsopixelA denote the pixel area of the rectangle and the number of detected torso 

pixels respectively. Figure 6(b) shows an example of fitted head and torso.  

Once the head and torso have been fitted, they are used as constraints to perform limb fitting. Since this 

process requires optimising position, orientation and size of limb templates, it is computationally 

expensive. To mitigate this, first, we search for the optimal position and orientation and, then, we resize 

limb templates independently to accommodate perspective effects. Since the second step requires updating 

(6) 
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the body model, it is performed after the bottom-up process in every iteration (see details in Section 4.3). 

The 2D limb templates are translated and rotated within the search space defined in Table 1 to maximise 

the joint probabilities between limb templates and body partitions. Since in the first iteration the 

probabilities of pixels belonging to each body partition are unknown, we set them as uniform. Therefore, 

the maximisation of the joint probabilities is equivalent to finding the maximum overlapping area between 

the models and foreground. Although the pose estimated from initial fitting may not be satisfactory due to 

foreground imperfections, it is sufficient to initialise the clustering process which will allow iterations 

between the bottom-up and top-down stages. In subsequent fittings, where the probabilistic body partitions 

are produced by the bottom-up process, the joint probabilities, defined in Equation 15, between the limb 

models and partitions are maximised. The joint probabilities will be discussed in detail in Section 5.1.  

Body model fitting is the most computationally expensive step in our framework since it is based on a 

hierarchical exhaustive search. To achieve real-time processing, the search strategy would need to be 

optimised. This could be achieved by using a pose tracking system: for example, importance sampling 

based trackers [51][52] can generate efficiently samples around the most likely body configurations. In 

such approach, an annealing framework [52][53] should be integrated to avoid  local minima.  

Figure 6(c) and (d) show the outcome of fitting both models on the foreground during the first iteration. 

The algorithm terminates when changes in body joint locations estimated from the fitted model between 

iterations become negligible. Then two confidence scores, one for each body model, are produced by 

concatenating the final joint probabilities of all body parts (Equation 14). Comparison of these confidence 

scores allow determining which pose estimate should be selected (Figure 6(e)). 

2.5. Generation of Probability Density Function  

The anthropometric constraints required for body model fitting are embedded in a set of Gaussian 

mixtures which are used to initialise the bottom-up pose recovery, i.e. probabilistic body part partition. 

This embedding is achieved by converting fitted templates (see Section 2.4) to a Probability Density 

Function (PDF) of Gaussian mixtures. Assuming the full body model fitting is considered,  fitted body 
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templates are expressed by { mhead, mtorso, mlua, mlla, mrua, mrla, mrul, mrll , mlul, mlll }
2 and their centres  are {µhead, 

µtorso, µlua, µlla, µrua, µrla, µrul, µrll , µlul, µlll}, 2ℜ∈nµ . Equation 7, 8 and 9 express how the PDF of Gaussian 

mixtures are generated.   
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where n∈ {head, torso, lua… lll}. P(pi|mn) denotes the  probability of a pixel, pi, belonging to a template , 

mn, i.e. it is the PDF of the Gaussian mixtures. Wn is the weight of the n-th mixture, and is proportional to 

the size of the template |mn|. COVn, in Equation 7, denotes the covariance matrix of the mixture which is 

proportional to the lengths of major and minor axes, i.e. Ln and L’n, of the corresponding elliptical model. In 

the cases of the head and torso whose templates are not elliptical, Ln =H/2 and L’n=W/2 for the torso, and 

Ln=L’ n=r for the head, where H and W denote the height and width of the torso rectangular template and r is 

the radius of the head circular template.  COVn also depends on the angle, γ, between Ln and the horizontal 

axis x and a scaling constant, k, see Equation 9. P(pi|mn) represents the statistical model of the 

anthropometric constraints obtained from the body model fitting. Figure 7(a) shows an example of initial 

Gaussian mixture density.   

3. BOTTOM-UP MODULE 

The aim of the bottom-up module is to partition the foreground probabilistically into a number of body 

parts. Here, we assume that the foreground has been reasonably well segmented, although it may contain 

 
2 Apart from head and torso pieces, names are abbreviated by 3 letters denoting: “left” or “right”, 
“upper” or “lower” and “arm” or “leg”. For the prof ile model, only “ua” and” la” are used for denoting 

(7) 

(8) 

(9) 
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some imperfections. To achieve the partition of the foreground, first, a set of image cues describing the 

body parts are extracted from the image. Then probabilistic clustering of foreground pixels is performed 

according to the extracted cues. The following sections discuss image cue extraction and probabilistic 

clustering in detail.  

3.1. Image Cue Extraction 

In this work, we select location, orientation, motion and colour as the cues to partition the foreground 

pixels. These cues are collected and concatenated as feature vectors for each foreground pixel. This choice 

of cues aims at producing feature vectors which exhibit homogeneity within the body part and are 

distinctively different between adjacent body parts. Since a body part is defined by a continuous set of 

pixels, except in some cases of occlusion, pixel location provides a first low level cue. Moreover, human 

limbs are highly directional objects; hence they can be modelled by either sets of parallel lines or 

trapeziums [38] whose main orientations describe the underlying skeleton’s main axes. Therefore, 

direction of edges is used as a cue to describe body parts. Because the human body is modelled as an 

articulated figure, distinctive changes of pixel motions occur at body part boundaries. Therefore optical 

flow representing pixel motion is used as a cue to partition body parts. The final cue for body part detection 

is pixel colour since each body part can usually be modelled by either homogenous colour or a low number 

of colour patterns [54].  

 Several image processing techniques have been employed to extract the image cues. Locations of the 

foreground pixels are obtained by conventional motion segmentation, along with shadow detection and 

foreground cleaning [47]. Orientation cues are calculated by populating orientations of main edges over all 

foreground pixels. First, foreground edges are detected by Canny Edge Detection. Then these edges are 

converted to line segments via Hough transform to obtain the main edge orientations and thus remove 

spurious edges and noises. Finally, orientations are populated to all foreground pixels according to the 

proximity between the pixel and line segment. Motion cues consist of two elements – speed and direction-, 

                                                                                                                                                                                           
single arm pieces:  upper arm and lower arm.  
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which are computed by Optical Flow. We adopted Lucas and Kanade’s algorithm [55] to provide dense 

motion cues. Noise was suppressed by smoothing using a moving-average-of-5 temporal filter. Since 

preliminary experiments [36] showed that the colour space choice did not affect results in body part 

detection, colour cues are expressed by RGB values. 

Since each individual cue provides only partial evidence of the presence of body parts, robust body part 

detection can only be achieved by cue combination. In the bottom-up pose recovery, body parts are 

partitioned using a clustering technique. Clustering is performed in a high dimensional space, called cue 

space, where each foreground pixel is represented by an 8-D feature vector, pi’ =(x i, yi, θi, vi, βi, ri, gi, bi), 

whose elements are location (x, y), edge orientation (θ), speed (v), direction (β), and colour (r, g, b). 

3.2. Probabilistic Partition of Foreground Pixels  

Since our algorithm aims at producing a probabilistic confidence measure for each estimated pose, the 

bottom-up module has to comply with a probabilistic modality. For this reason, Gaussian Mixture Model 

(GMM) clustering is adopted. GMMs partition foreground pixels in the cue space into the desired number 

of body parts, i.e. 10 for the full model and 8 for the profile model, with soft boundaries. Taking the full 

model as an example, a set of 10 probabilities, P(pi|Cj), j∈ [1..10] and
j

Σ P(pi|Cj)=1, is produced for each 

foreground pixel, pi, indicating the likelihood of a pixel belonging to each of the 10 clusters, Cj. In our 

previous work [36], GMMs were initialised by K-means clustering where seeds were provided from the 

top-down module. In this work, we propose using a probability density function (PDF) (see Section 2.5) 

where anthropometric constraints are embedded to initialise GMM clustering. The PDF, P(pi|mn), as shown 

in Figure 7(a),  which is obtained from Equation 7, allows GMM clustering to be initialised at the 

Maximisation-step of its Expectation-Maximisation (E-M) computation. Then GMM partitions the 

foreground pixels according to the 8-D feature vectors in the cue space. Figure 7(b) illustrates the partition 

result where a 2-standard deviation boundary has been drawn to represent each cluster. Note that a spurious 

cluster located at the left hip should correspond to the left lower arm, which is actually hidden (see Figure 



 19

6(b). Fortunately, the poor confidence score associated to that cluster allows identifying this error.  

             

(a)                              (b) 

Figure 7: (a) PDF of Gaussian mixtures initially generated by converting model fitting result. (b) optimised 

GMM clustering resulting from EM optimisation 

4. INTEGRATION OF TOP-DOWN/BOTTOM-UP MODULES 

The integration of top-down/bottom-up modules aims at improving the accuracy of body model fitting by 

incorporating clustering results (see Figure 1). This is achieved by, first, associating body clusters to body 

parts. Then positions of body joints are extracted from the clusters and used to update the body model. 

Finally, top-down and bottom-up processes iterate until the body model converges towards a stable 

configuration. If convergence is not achieved within a certain number of iterations, this indicates that either 

the other body model should be used or the pose is too complex to be recovered from the provided camera 

view.  

4.1. Part Registration 

 To make the body clusters meaningful, they need to be associated to the body parts. This insures the 

anthropometric constraints embedded in the body model are linked to correct clusters. This is important 

especially when two or more body parts are very close or even overlap on the image plane.  The original 

cluster-body part associations established at the cluster initialisation stage becomes invalid as centres of 

clusters drift during the clustering process. Thus new registration is required.  
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The optimal one-to-one correspondence between the N clusters and the N body parts is achieved by the 

combinatorial maximisation of the sum of joint probabilities between the N cluster/body part pairs. If we 

define C as the ordered list of N clusters, {Ck}, and Mi  as one of the N! possible ordered lists of N templates 

, {mk}, the optimal list of templates , Mo, which maximises the clusters-body parts association, is given by 

Equation 10: 
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where Mi[k]  is the kth element of the list Mi  and )( ji CmP I is the joint cluster-body part probability, which 

is defined in Equation 15.  To reduce the computational cost of estimating Mo, we restrict our search space 

so that only the 3 closest templates (smallest Euclidian distance between centroids) for each cluster are 

considered.  

4.2. Extracting Body Joints from Body Clusters 

After registration, a set of body joints can be extracted from the clusters. These joints are important as 

sizes of limbs are derived from them when updating the body model. We class body joints within two types: 

distal joints which are the endpoints of kinematic chains such as wrists and ankles; intermediate joints 

which are joints connecting adjacent body parts, i.e. shoulders, elbows, hips and knees. Locations of 

intermediate joints are defined as the clusters’ probabilistic boundaries as expressed in Equation 11:  
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where pi, Cj and Ck denote the foreground pixel and the adjacent clusters. Jj-k is the intermediate joint 

between Cj and Ck. The conditional probabilities are given by GMM clustering. 

 The distal joints are located by using image cues, geometry constraints and, if available, appearance 

consistency between adjacent frames. As a first approximation, the expected distal joint should be 

positioned so that the distal and the adjacent intermediate joints are equidistant to the cluster centre. 

Moreover, since distal joints are defined as endpoints of limbs, they correspond to positions where pixel 

motion and colour changes abruptly. Finally, if the pose estimation in the previous frame is successful, as 

(11) 

(10) 
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indicated by the confidence score, locations of the distal joints are used to initialise SIFT features so that 

their recognition in the current frame can contribute to distal joint detection, see Section 2.2. Therefore, 

distal joint positions can be derived from the maximisation of Equations 12: 

{ })()()()(maxarg *
iNiiNiN

p
k ppppJ

i

Ψ+Ω+∆+Γ=  

“Normalised Colour Edge Map” ( )( iN pΓ  ) measures the strength of colour change within an image frame. 

It is calculated by the following process. First, the input image is decomposed into three single band images 

(Red, Green and Blue) and Sobel edge detection is applied to each of them to generate three edge 

responses,( )( ir pϕ , )( ig pϕ and )( ib pϕ ). Then, the“Colour Edge Map” ( )( ipΓ ) of the image is computed by 

taking the maximum edge response, i.e. ))(),(),(max()( ibigiri pppp ϕϕϕ=Γ . Finally, )( iN pΓ  is produced by 

normalising )( ipΓ , i.e,
 

))(max(/)()( iiiN ppp ΓΓ=Γ  . 

)( iN p∆ denotes “Normalised Change-in-Motion Map”. Lucas-Kanade optical flow algorithm is applied to 

the previous and next frames to generate motion vectors. They then undergo Sobel edge detection to 

generate the “Change-in-Motion Map” ( )( ip∆ ). Finally, standard normalisation is applied to produce )( iN p∆ .  
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−=Ω )( expresses the geometric constraints of the distal joints.

 
kC  and Jj-k 

denote respectively the centre of cluster Ck and the intermediate joint between Cj and Ck.
 

)( ipΩ penalises 

pi estimates which violate equidistance between 
kC  and Jj-k.  

ΨN
*(pi) is the normalised score of SIFT matching. This measure is only used when the previous frame’s 

pose has been recovered successfully (see Section 5).  

The optimal pi is searched from 
kC to 

kjkk JCC −−+ 2  along the extended line of 
kkj CJ ,−
 
(towards the 

limb’s distal end) to maximise Equation 12. Figure 8 shows examples of intermediate joints (here, shoulder 

and elbow) and the extraction of a distal joint, Jk (i.e. wrist).  

(12) 
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Figure 8: Body joint extraction 

 

4.3. Body Model Update 

The purpose of extracting body joints from the clusters is to update the body model so that, after each 

iteration of the top-down and bottom-up processes, better body part ratios are estimated to accommodate 

perspective effects. This is achieved by updating the body model using the putative body joint locations 

extracted from the clusters. Since head and torso templates were located using robust methods, only limb 

templates are updated. The length of the limb templates is resized according to the distance between the 

limb joints estimated from the clusters. If we define the length of a body part in the current iteration, l, by 

L i
l, where i∈ {lua, lla, rua, rla, rul, rll, lul, lll}  in the full model fitting mode, the updated length after an 

iteration is calculated using Equation 13.  

l
cL

l
iL

l
i LLL αα +−=+ )1(1    

where Lc
l denotes the length of the body part estimated from the joint positions extracted from the 

associated cluster and αL indicates the model updating rate; ranging from zero (no updating) to one (full 

replacement by Lc
l). In our experiments, we set αL = 0.3. 

4.4. Termination Criteria 

The succession of clustering and model fitting processes iterates until the positions of joints extracted 

from the fitted body model converge.  Convergence is defined as a joint variation between consecutive 

(13) 
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iterations falling below a predefined consistency threshold. If this criterion is satisfied within a given 

number of iterations, a skeleton, as shown in Figure 6(e), is then extracted from the final body model and a 

probabilistic confidence measure is calculated. Otherwise, the pose cannot be recovered for the given body 

model. If none of body models is successful, the pose is considered as too complex for being estimated 

from a single camera view and is discarded from further analysis. 

 

5. PROBABILISTIC CONFIDENCE FOR POSE ESTIMATION 

5.1. Mathematical Formulation 

An important feature of our method is that a confidence measure is provided for every pose estimate. 

This value is useful not only for pose evaluation but also for many applications built upon pose recovery. 

For example, body part tracking using either Kalman or Particle filter requires a prior probability to 

quantify how much an observation can be trusted [56][59]. Our confidence measure is the probability that 

a pose is recovered successfully, P(pose). If we assume this is determined by the success of recovering all 

body parts and their associated recovery probabilities are independent, it can be expressed by Equation 14.  

          
∏=

j
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where P(Xj) denotes the probability of body part, Xj, to be recovered successfully. We evaluate this by 

extending the definition of the overlap measure (Equation 6) to other body parts.  
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where 
jmA and 

jCA denote the sets of pixels belonging to the  model part mj and cluster Cj respectively. 

Norm || ⋅ denotes the number of pixels in a set. Therefore, for each model part mj, ∑
∈

=
ji

j
mp

mA 1|| . Since 

the cluster Cj is defined by GMM clustering over the entire foreground pixels, F, its pixel area is 

conceptually equivalent to the sum of the probabilities of foreground pixels pi∈F belonging to that cluster: 

(14) 

(15) 
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Similarly, jj Cm AA I corresponds to the sum of the probabilities of model pixels pi∈mj belonging to that 

cluster: 
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Therefore, P(Xj) is expressed by
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5.2.  Normalisation of Confidence Scores  

Confidence scores for the full model (Pfull(pose)) and profile model (Pprofile(pose)) are computed to 

determine the most suitable body model for pose recovery. For accurate comparison, a normalisation 

procedure is required as the two scores are formulated with different number of body pieces. As shown in 

Equation 19, the normalised confidence scores, Pfull
N(pose) and  Pprofile

N(pose) are generated by considering 

the geometric mean of underlying fitting probabilities which consist of different number of body pieces  

according to the model: 

kN posePposeP
1

)]([)( =
 

where k=10 or 8 for full or profile model fitting respectively.  

6. EXPERIMENTAL RESULTS 

6.1. Datasets 

Three datasets were used to evaluate our pose recovery algorithm: (1) HumanEva I dataset [57] (2) 

outdoor walking sequences produced by Hedvig Sidenbladh [58] and (3) MuHAVi dataset [59]. All are 

benchmark datasets used by the computer vision community and are publicly accessible.     

 HumanEva I (HE I) dataset [57] consists of 4 human subjects performing 6 types of motions. The dataset 

(16) 

(19) 

(17) 

(18) 
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allows quantitative evaluations as it provides both motion capture and video data (progressive scan images; 

640 x 480 pixels) which were collected synchronously. Therefore, motion capture data can be used as 

ground truth: since cameras are calibrated, 3D data points can be projected on the 2D sequences in order to 

evaluate quantitatively 2D pose estimates. Moreover, a standard set of error metrics [60] is defined to 

evaluate pose estimations and an optimised motion segmentation algorithm is provided. 

[58] contains a female subject performing circular walking and straight line walking (progressive scan 

images; 320 x 240 pixels). The outdoor setting of this dataset provides additional values and challenges. 

The human silhouettes were extracted and provided by [17]. 

The MuHAVi dataset [59] is one of the latest publicly accessible dataset for human motion modelling 

(interlace scan images; 720 x 576 pixels). It contains 14 actors performing a number of primitive actions, 

including walking, running, kicking and punching. This dataset also provides extracted foreground 

silhouettes.  Images were deinterlaced before processing. 

6.2.  Interpretation of HumanEVA Ground Truth 

Since our algorithm, like many other pose recovery algorithms in the literature, is evaluated against 

MOCAP ground truth, an important question is whether the ground truth provided by MOCAP data is 

consistent to what humans perceive. Since such investigation would allow refining the evaluation of pose 

recovery algorithms, an experiment of comparing HumanEva ground truth (HE GT) with human annotated 

GT (HA GT) is conducted. 

6.2.1. Experiment Setting 

The aim of this experiment is to evaluate how definitions of  body joints varies between human 

perception and MOCAP data provided in HumanEVA I. Ten graduate subjects (4 females and 6 males), 

participated in the experiment. The sequence, Walk1_C1_S2 (see Figure 10), is used as the test sequence. It 

contains an actor walking in a circular manner and thus it includes a variety of body postures seen from 

different viewpoints. We studied the sequence between frame 340 and 760 during which the actor 
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completes a full circle. Frames were down-sampled by 5, thus a total of 85 frames were manually annotated 

by the 10 subjects, who were asked to mark positions of 13 joints on the image using their own 

understanding of anthropometry. The joints, i.e. L/R shoulder, L/R elbow, L/R wrist, L/R hip, L/R knee, 

L/R ankle, and the head centre, correspond to HE GT.  

6.2.2. Results of Evaluating HumanEVA Ground Truth 

We use the error metrics defined in HumanEVA to measure the difference between HA GT and HE GT. 

Figure 9 shows the average error (in pixels) and associated standard deviation (s.d.) for each joint of human 

annotations against HE GT. The figure shows noticeable deviations for the head centre, left hip and right 

hip.  Divergence regarding the position of the head centre was expected since it is not explicitly defined in 

the HE GT: it was estimated as the average position between the top and bottom of head as defined in HE 

GT.  However, the large error at L/R hip indicates a disagreement regarding hip definition between human 

annotators and HE GT. Figure 10 shows the projection of the shoulder points and hip points defined in HE 

GT onto the image plane. Clearly human annotators think the hip points are too close to each other. Table 2 

shows the average and standard deviation (s.d.) of error for each annotation and overall annotation. The 

overall average error is 11.0 pixels with a s.d. of 4.2 pixels. This provides a baseline for comparison of pose 

recovery algorithms evaluated against the HE GT.     

 

Figure 9: Average error and standard deviation for each joint  

from a total of 10 human annotations against HE GT. 
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Figure 10: Projection of the HE GT onto the image plane: lower green/red crosses, upper green/red crosses 

and white cross show locations of the hips GT, shoulders GT, and shoulder centre respectively. 

 

 Average error 

(pixel) 

Standard 

deviation  

HA 1 11.3 3.9 

HA 2 10.9 4.9 

HA 3 10.1 2.8 

HA 4 12.2 4.8 

HA 5 10.2 3.9 

HA 6 12.4 6.7 

HA 7 11.8 4.8 

HA 8 10.1 3.6 

HA 9 9.7 4.4 

HA 10 11.1 4.5 

All 11.0 4.2 

Table 2: Average error and standard deviation for each human annotation and overall annotation. 
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6.3. Quantitative Evaluation of the Pose Estimation Algorithm  

6.3.1. Evaluation of HumanEVA Walking Sequence 

Our pose recovery algorithm was first tested on the sequence used in Section 6.2. This sequence 

contains, in total, 420 frames during which the actor walked a complete circular path (see Figure 11). The 

resolution of the image is 640 x 480 pixels and the average human height is about 350 pixels. Figure 11 

presents for each frame the confidence measures of pose estimates obtained using either the full (blue) or 

profile (red) body models. Since frames 340, 440 and 540 display typical profile, back and profile views, 

the better confidence scores correspond to the expected model. On the other hand, frames 640 and 740 are 

transition views where model score curves intersect. This confirms our suggestion that the confidence 

measure is a useful indicator for selecting the correct model for a given frame.    

After selection of the best pose estimates using confidence scores, Figure 12 (a) shows accumulated 

number of image frames under defined error margins according to HE GT. The red, green purple and blue 

curves indicate the results obtained from (1) our previous work [36], which used full model only, (2) 

improved fitting of the full and (3) profile models using techniques presented in this paper, and (4) 

combines (2) and (3) according to the confidence scores. As can be seen in the figure, by refining the 

estimation framework, performances of pose estimation improve as the curve shifts leftwards. We can also 

notice that in this experiment, the profile model generally produces more accurate results than the full body 

model. We believe this can be explained by the fact that a walking motion, where arms swing back and 

forth, displays more views where an arm is occluded (even partially) than views where both arms are 

visible. 

Another capability of confidence scores is to select good pose estimates. Figure 12 (b) shows positive 

correlation between confidence scores (blue) and pixel errors (red). The image frames are ranked by both 

confidence scores and errors produced from their poses estimation, and grouped by defined number of 

accumulated frames. Our proposed pose recovery method achieves an average error of 19.8 pixels when all 

pose estimates are considered, i.e. “All” bins. However, when one considers the top 50 frames, i.e. 12.5% 
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of all frames, as selected by our confidence score, an average error of 16.8 pixels is achieved. We have also 

calculated the correlation between the two curves. We obtained 0.71 for the Pearson Product-Moment 

Correlation Coefficient (PMCC) [61], which ranges from +1 (max. positive correlation) to -1 (max. 

negative correlation), between confidence scores and pixel errors. The green horizontal line shows the 

‘average error’ in human annotation indicating what an ‘optimal’ algorithm should aspire to.  

Figure 13 illustrates examples of estimated poses selected all from the “top 50” bins according to 

confidence scores. Since two body models are used, poses can be recovered in a large variation of 

viewpoints. This achieves significant improvement from our previous work [36] where poses shown in 

profile views were unlikely to be recovered successfully as only the full body model was used.   

6.3.2. Evaluation of HumanEVA “Combo” sequence 

One of the main characteristics of our algorithm is that poses can be recovered independently to the type 

of activities. To demonstrate this, HumanEVA Comb2_C1_S2 is used. This sequence contains an actor 

performing several activities, altering continuously from one action to another. Here, we are particularly 

interested in the transitions between actions, since learning-based pose recovery algorithms would not be 

able to cope with them. To our best knowledge, this is the first quantitative experiment conducted for 

evaluation of pose estimation during activity change. We consider seven action transitions: Walk-to-run, 

run-and-turn, run-to-stop stop-to-short balance (left leg up), stop-to-short balance (right leg up), 

stop-to-long balance (left leg up) and stop-to-long balance (right leg up). For each transition, 20 to 50 

frames were extracted and this resulted in processing 250 frames in total. After processing these sequences, 

we perform the same quantitative analysis as in Section 6.3.1. The overall average error is 23.7 pixels while 

the top 12.5% of total frames selected according to conference scores produces an average error of 21.1 

pixels according to HE GT. There is still high correlation between group errors of selected frames by 

confidence scores and actual errors (PMCC=0.69).  

Figure 14 illustrates the quality of estimated poses selected according to confidence scores.  
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Figure 11: Confidence measure of the full (blue) and profile (red) models over frames 

6.4. Qualitative Evaluation of the Pose Estimation Algorithm  

Qualitative results of pose recovery on an outdoor sequence [58] and sequences showing various actions 

[59] are also provided. The outdoor sequence, as shown in the first row of Figure 15, is particularly 

challenging due to uncontrolled lighting condition and the subject’s clothing whose colour is similar to 

human skin.  The success of pose recovery on this sequence emphases the importance of cue combination; 

while colour is not discriminative, other cues, such as optical flow and edge orientation, provide useful 

indication to distinguish body parts. Second and third rows of Figure 15 illustrate pose recovery on 

primitive actions provided by MuHAVi dataset [59], i.e. walking, running, punching and kicking. The 

algorithm was unable to estimate the static arm correctly in kicking sequence as colour, motion and pixel 

location fail to provide discriminative cues. The confidence score of pose recovery on this sequence is 

relatively low compared to that of other sequences as none of the clusters can be matched accurately to the 

arm model. Therefore, a low fitting score of the arm is produced and results in an overall low confidence 

score for the estimated pose according to Equation 14. Despite this, the estimated poses are still 

informative if the “confidence scores” of individual limbs are considered (see Section 7). In contrast, the 

pose recovery on walking, running, and punching are successful, because pixel motion provides a useful 

cue for body part segmentation even though colour is ambiguous.     
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6.5. Summary of Evaluation 

Our pose estimation method does not require any training and produce quantitatively and qualitatively 

convincing results. Although recent learning based approaches [62][63][64][31] achieve 5-15 pixels error 

for HumanEVA datasets, they are constrained by only being able to estimate poses with activities with 

which they have been trained. Therefore, these approaches cannot be applied in realistic day-to-day 

scenarios with natural human motions, such as the HumanEVA “Combo sequence” (see Section 6.3.2). 

While several other activity independent approaches have been suggested [34][35][38], they only report 

visual qualitative results, which do not allow objective comparisons. We should mention that activity 

independent pose tracking has also been proposed and tested on HE I dataset [56]. They achieved an 

average error of 13.2 pixels for this easier task which relies on manual initialisation and where they assume 

the character is performing bipedal motion. 

Since learning-based approaches usually learn poses based on MOCAP data (for example, the Ground 

Truth provided by HumanEVA), they usually have a positive bias towards the references they have learned 

from. On the other hand, our method uses visual cues similar to the ones perceived by humans and used to 

recognise body postures. Therefore, comparison of our results with MOCAP based Ground Truth may 

result in larger errors than with body joint positions estimated by human beings as discussed in Section 6.2.  

7. CONCLUSIONS AND FUTURE WORK 

In this paper, a novel probabilistic bottom-up/top-down 2D pose recovery framework is proposed. It is an 

iterative process between a bottom-up stage, which partitions the foreground probabilistically using 

relevant image cues, and a top-down stage, which performs a hierarchical body model fitting to constrain 

segmented body partitions. Since a suitable set of local image cues is exploited to extract characteristics of 

body parts, there is no need for training poses. Consequently, our approach is totally activity-independent. 

Since both bottom-up and top-down processes are modelled probabilistically using Gaussian mixtures, a 

confidence score is generated for evaluation of the success of pose estimation. Our method has been 
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validated by various human motion sequences consisting of a wide range of activities, camera viewpoints 

within both indoor and outdoor scenarios. In addition, we identified some discrepancy between Ground 

Truth joint positions according to whether they are defined by humans or a motion capture system. 

As results demonstrate, first, our confidence measure predicts the accuracy of recovered postures and, 

secondly, our method is able to estimate reliably a substantial number of 2D poses. Therefore, the 

presented framework appears particularly suited to regular (re-)initialisations of body trackers 

[56][62][63]. Even in cases that full pose recovery is unavailable, such as in the recovery of the kicking 

sequence shown in the last row of Figure 15, partial initialisation can still be achieved: since the confidence 

score is the product of each limb’s fitting score, a tracker can be partially initialised across different frames 

where individual limbs are estimated accurately.  

In future work, we intend to integrate our framework within a pose tracking system to increase its 

usability. Not only could poses, which currently cannot be recovered, be estimated by the tracker, but 

tracker predictions could contribute to pose evaluation. This would lead to smoother and continuous 

recovery of poses for a video sequence. Moreover, since we want to target real time applications, 

optimisation of the search strategies used in the framework is required.  
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(a)                                                                                           (b) 

Figure 12: (a) Accumulative curve showing the average pixel error between the estimated joint locations 

and HE GT. Results of our previous work [36], fitting of the full model with the advanced technique, fitting 

of the profile model with the advanced technique and the combination of full and profile model fitting are 

presented with red, green purple and blue curves respectively. (b) Average pixel error of cumulated pose 

estimates. Blue and red curves show image frames sorted by confidence scores and actual pixel errors 

respectively. Green line represents errors in human annotation with s.d. shown as error bars. 

 

            

                       

Figure 13: Results of pose recovery for HE I walking sequence [57]. Head and torso are shown by a yellow 

circle and rectangle. Yellow line segments and solid circles indicate the limbs and body joints;  

Crosses represent joints defined by HE GT. 
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Figure 14: Results of pose recovery for HE I “Combo” sequence [57]. Head and torso are shown by a circle 

and rectangle. Yellow line segments and yellow solid circles indicate the limbs and body joints.  

 

 

Figure 15: First row: results of pose recovery on the outdoor circular walking sequence [58].  

Second row: results of pose recovery on straight-line walking (1st half) and running (2nd half).  

Third row: results of pose recovery on kicking (1st half) and punching (2nd half).  
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