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Abstract— In this paper, we address the recovery of humanl2 postures from monocular image
sequences. We propose a novel pose estimation frameek which is based on the integration of
probabilistic bottom-up and top-down processes whit iteratively refine each other: foreground
pixels are segmented using image cues whereas araiehical 2D body model fitting constraints
body partitions. Its main advantages are two-fold. First, the presented framework is
activity-independent since it does not rely on leaing any motion model. Secondly, we propose a
confidence score indicating the quality of each d@stated pose. Our study also reveals significant
discrepancy between ground truth joint positions acording to whether they are defined by humans
or a motion capture system. Quantitative and qualiitive results are presented on a variety of video

sequences to validate our approach.

Index Terms— Human body pose estimation, stochastic clusteringsaussian mixture modelling,

pattern classification, object recognition, confidace measure, ground truth.

1.INTRODUCTION

Human pose recovery from a monocular camera isngoitant and challenging task in computer vision.
Such research aims at allowing analysis of bodyuypes for a range of applications from the study of

athletes’ performances during competitions to teection of antisocial behaviours on images capture



from CCTV cameras. A robust system should be abldetal with the complexity of human poses,

including self-occlusions, and observation variasiodue to different clothing, lighting and camera

viewpoints. So far, techniques have only been pegdor constrained scenarios focusing on specific
activities within a controlled environment. Theref, a general solution remains an active resdapib

in computer vision.

The goal of pose recovery can be defined as thaisation of a person’s joints and limbs in eithar
image plane (2D recovery) or a world space (3Dveng, which usually results in the reconstructidma
human skeleton. In this work, we concentrate op@ge recovery as it is the corner-stone of humaiomo
analysis. For example, a sequence of 2D posturebeaised for the study of linear gait [1]. It iscaan
essential step towards 3D pose recovery [2], wbazkid be achieved, for example, by integrating aame
self-calibration techniques [3][4]. The successpote recovery is usually measured according to the
accuracy of estimates of joint positions. Howewar must accept some poses cannot be recoveredausing
single camera because of self-occlusions or cevfiaww-points make this task impossible. Therefere,
robust pose recovery system should be able to &eathe accuracy of joint estimates to recognieseh
difficult postures.

In this paper, we propose a novel probabilisticdratup/top-down approach for 2D pose recovery. The
bottom-up module uses clustering technique to sagbwdy parts from foreground pixels by integrating
multiple image cues which consist of low-level iradgatures (i.e. location, colour, edge orientatiod
optical flow) and advanced descriptors (haar-baskdboost responses, SIFT correspondences and omega
model values). Clustering is driven by the top-danadule of fitting a 2D human body model to obtain
optimal segmentation.

The strength of our method is, unlike many statéiefart approaches, that it does not require any
training stage, as body part characteristics caaxbacted using selected image cues. This makgzose
recovery authenticallyctivity-independent and, therefore, able to recover unusual poseseSinkey

application of our technique is the initialisatiof human body trackers, jrobabilistic confidence



measure is produced for each estimated pose smiti@tsations could be performed only when postu
are recovered with high confidence.

Another contribution of this paper is a statisticanparison of posture ground truths produced theei
humans or a motion capture system. We identifgaificant difference that needs to be taken intmaat
when evaluating a training free method like ours.

The structure of this paper is as follows. Afteeganting related previous work, an overview of our
framework is given. Detail discussion of the topmdomodule, the bottom-up module, and integration of
these two modules are presented respectively itidde2, 3 and 4. In Section 5, the probabilistic
confidence measure for recovered poses is intrad@eantitative and qualitative pose recovery tssul

are discussed in Section 6. Finally conclusionsfahde work are addressed in Section 7.

1.1.Related Work

Human pose estimation has become one of the mtige¢ aesearch topics in computer vision over the
past decade. [5] [6] and [7] provides extensiveveys of human motion tracking and analysis methods,
and a more recent review is available in [8]. la Hroadest taxonomy, pose recovery algorithms ean b
divided into learning based or activity independaproaches depending whether training of eitheepo
or observations is required. Pose recovery algostltare also traditionally classified into top-down
(model-based) and bottom-up (model-free) strategies

In learning-based approaches, poses are estimatad) weither generative [9][10][11][12] or
discriminative [13][14][15] approaches. Generati@pproaches use Bayesian rule to infer the pose
configuration from learned state space to produsténal image alignment to the observation, whereas
discriminative approaches learn direct mapping tions from the visual observation to the pose
configuration.

Whatever the approach, the main difficulty lieghe high dimensionality of the pose space. To tackl
this, dimensionality reduction methods, such asdijsal Component Analysis [16][17], Isomaps

[18][10][9], Laplacian Eigenspace [19][11], Gaussi®rocess Latent Variable Model (GPLVM)



[20][21][9], Local Linear Embedding [22][10][23][9nd Diffusing map [24] have been investigated. In
[23], view-dependent activity manifolds of humalhsuettes and mapping function between the marsfold
and 3D pose space were learned. Thus, a 3D poseecaatovered by projecting the visual input to the
manifold and mapping to the learned 3D pose sgastead of learning from image evidence, [21] léarn
postures and motion dynamics, and embedded theamlémv dimensional space using GPLVM. More
recently in [9][10], both pose configuration andwal observation manifolds have been constructélledo
generative pose inference can be performed maigesffly within the two low dimensional spaces.

A successful pose recovery algorithm also requaresfficient search strategy. The most popular ones
include dynamic programming [25][26], Markov Ch42v][28], particle filtering [29][30][31], genetic
algorithm [32] and Simulated Annealing [29][30][32h addition in [11], 3D voxel data is projectexa
Laplacian Eigenspace so that nodes of body pacsnbe discriminative. This allows body part seach t
be performed in a much smaller anthropometric-caited space and removes part ambiguity. Howe's
[27] silhouette-pose lookup approach is able teceh set of possible poses based on the givert inpu
silhouette. Then Markov chains modelling the terapolependency of human motion are exploited to
determine the most likely chain of pose sequeri@@3.presents a top-down generative approach wsing
3D physics-based motion prior so that searchingasfes is constrained effectively among physically
plausible hypotheses. [32] introduces an advanesdck framework using stratified anneal genetic
algorithm for poser recovery and tracking.

Most discriminative approaches [13][14][15] use limear regression techniques to learn the mapping
between pose configuration and visual observatiorf13] Bayesian mixture of experts with density
propagation is used for learning and inferring go%es a result of a comparison between a variety of
regression methods including ridge regression,\Raelee Vector Machine (RVM) regression, and Support
Vector Machine, it was suggested RVM gives the pesformance [14].

The main disadvantage of learning-based methotieis dependency on the training dataset, i.e. they

can generally only recover poses belonging to gleiactivity and/or a specific actor. [15] proposesihg



a mixture Gaussian Process kernel to handle effigi@ery large training sets in order to be aloléetarn
and infer several activities. However, under tloisesne, results are only demonstrated for a unigter.a

Activity independent pose recovery algorithms ekgltherent human body characteristics which are
present in the image, that are usually represéntéuiv-level and mid-level image cues such as adsbin
[33][34], face [33], shape [35], optical flow [38][], edge orientation [36][34] [38], and static fawmint
[39][2]. Since each individual cue is usually weelte combination is performed by either boostir@j gt
clustering [34][36]. For example, [34] created add®ensional feature vector from edge orientatiod a
colour for body part clustering. In [36] the poseestimated hierarchically; head and torso weratémt
using separate cues and limbs are found by clagtdeiature vectors consisting of pixel localityged
orientation, colour and optical flow.

These bottom-up methods usually apply geometrisrtd filter out impossible pose candidates found
using image cues. In [38], an edge map is compoyedividing edges in segments which are refined by
constrained Delaunay triangulation. Then part cdateis are identified by paring parallel lines adouy
to anthropometric constraints. [25][35] assemblapghpieces found from Normalised Cut to form a
holistic human body using a predefined parsingsiutowever, these bottom-up approaches are prone to
noise, unless they receive feedback by top-dowoga®as demonstrated in [11] and [34].

Our proposed method allows estimating poses indipdly from the type of human activity. The
method consolidates both bottom-up and top-dowe pesovery strategies so that strengths of top-down
and bottom-up approaches can be combined, i.ecteff@ess of defining body structure and pose
constraints, and accurate segmentation of individody pieces respectively. Compared to [34] ar8],[3
our bottom-up process uses a comprehensive sietafe cues including pixel locality, edge orieruati
optical flow and colour so that body parts can égnsented in many difficult scenarios where somes cue
are indiscriminative. Unlike [11] and [34] whichrobined the top-down/bottom-up sequentially, themmai
contribution of the proposed framework is to corrtiee top-down and bottom-up processes using &alos

loop thus body model configuration and body pagnsentation can be iteratively refined. The estimate



pose can then be derived from the body model whertonfiguration reaches a steady-state. In additio
each generated pose is assessed by a confidemsetscguantify the accuracy of the pose recovery

process.

1.2. Framework of Our Approach

The main characteristic of our algorithm lies ie thtegration of bottom-up and top-down approaches
using probabilistic Gaussian modelling. The botigmmodule partitions the foreground area into body
parts using a probabilistic clustering algorithne@ding to relevant image cues. The top-down module
adapts dynamically a generic 2D body model to “fite segmented body parts by maximising a
probabilistic objective function. The purpose ofstlis to impose anthropometric constraints to the
segmented body parts. Our methodology does notireeqaining and thus is activity-independent.

Moreover, since poses are estimated probabilitical confidence score is generated to evaluate the
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Figure 1 Flow diagram of the proposed pose regoakgorithm

As illustrated in Figure 1, our algorithm takes@eo containing a moving human character as art epd
generates for each frame a 2D skeleton with a denfie measure. The system iterates the processes of

bottom-up and top-down pose recovery, ady part clustering and body model fitting respectively. A



set of image cues describing body part charadesistre extracted from the input and used in the
bottom-up module to probabilistically partition éground pixels into a desired number of body pieces
(section 3). The top-down module fits a 2D genduiicnan body model onto the produced clusters by
dynamically adjusting its scale, limb ratios anticatated configuration (section 2). In order téeigrate

the two main modules, a number of auxiliary modalesintroduced. A module converting the fittedypod
model to a set of Gaussian distributions that emtzedhropometric constraints enforces body panttio
(obtained from the clustering) to form a plausiblgnan posture (section 4). After clustering, coetfice
scores is calculated by considering joint probtbgi between the fitted body model and the body par
partitions. This facilitates body part registratiorthe clusters, body joint extraction and thudatjng the
body model (section 5). The successions of clugedand model fitting processes iterate until the
configuration of the fitted body model reaches eady-state. Finally, a 2D skeleton representing the
recovered 2D pose is generated with a confidenasuane which expresses the expected quality of the

pose recovery process.

2. Tor-DowN MODULE

The aim of this module is to initialise the bottam-process by providing Gaussian mixtures where
anthropometric constraints are implicitty embeddkdstarts with fitting a body model to body part
partitions and transfers the body model to Gaussiatures. Although the probabilistic modellingladdy
parts using Gaussians has been adopted by othgrgyf41][42], our integration of the top down/batto
up approaches allows optimising iteratively thiogass within a single frame. Two types of fully
configurable body models are fitted separately evaluated using confidence measures to choose the
optimal model. In this section, the human body ni@dee introduced. Then, this is followed by théade
description of the hierarchical fitting steps whioblude head, torso and limb fitting. Finally, ension

of the fitted body model to Gaussian mixtures iglaxed.



2.1.Human Body Model

In this work, a human body is defined as a kinecneltiain of body parts. We represent this articdlate
structure using 2D generic configurable modelschitian adopt any human posture. In order to betable
deal with any informative camera viéweach element of the model (body part template)bmmscaled
independently so that alteration of body part satloe to perspective can be represented on a 2BImod
Moreover, since self-occlusion of an arm by theadds very common and can last for many consecutive
frames, this situation is specifically addressedun framework. We employ two body moddisll and
profile models as shown in Figure 2, to process our data. As shovwur experiments (Section 6), most
human poses can be represented by one of the twlelsadhe selection of the more appropriate one is
achieved by comparing their associated confidenoees. In the few cases, where none of the models i
suitable, their poor confidence scores indicatgthges cannot be recovered. Apart from the torsohwib
modelled with a rectangle, all other body piecethefbody model are initially constructed usingpsks
and standard human body ratios [43]. The differdmetmveen full and profile models is the number of
pieces modelling human postures and some anthrdgoroenstraints. As shown in Figure 2, the profile
model has only one arm: this allows dealing wittvig, where the torso, which is the largest bodgeie

occludes one arm. Furthermore, models are assdaidtie different anthropometric constraints, agelis

in Table 1.
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Figure 2: (a) Full body model and correspondingep@s) Profile body model and corresponding pose.
Note that self-occlusion of the far arm (markedlashed ellipses) is addressed by using the profile

template, which only models one arm

common Head, upper arms and legs are connected to the torso
constraints Upper and lower pieces of each limb are connected tip-to-tip
applied to both

models Head perimeter touches the midpoint of the torso's upper boundary

The connecting vertex of the upper left/right arm to the torso has 3 DOFs, i.e. planar rotation,

Full V- and H- translation around the upper left/right corner of the torso
specific
model The connecting vertex of the upper left/right leg to the torso has 2 DOFs, i.e. planar rotation
constraints
and H- translation inwards from the lower left/right corners of the torso
applied to either

The connecting vertex of the upper arm to the torso have 3 DOFs, i.e. planar rotation, V- and
full or profile
Profile H- translation around the midpoint of the torso upper boundary
model
model The connecting vertex of the upper left/right leg to the torso have 3 DOFs, i.e. planar

rotation, V- and H- translation around the midpoint of the torso lower boundary

DOF, H- and V- denote Degree of freedom, Horizoatal Vertical.

Table 1: Common and specific anthropometric coimdsaised in full and profile models.

2.2.Head Detection
The first step of body model fitting is the deteatand localisation of the head. The distinct studbe
head and abundant features which can be extractediie face, if visible, makes it the most releabbdy
part to identify. To ensure robust detection of ttitical body part in our framework, we propodesion
of “Q" model head detection [44], AdaBoost face deteclitb], and SIFT [46] head tracking (Figure 3).
The “Q" model detects the head by considering its unghape, while Adaboost adds face information, if

visible, to boost the head detection. Furtherm8IET exploits temporal consistency of detectiorihef

! We define an informative camera view as a viewnahfer a majority of poses, most body parts ate no
self occluded. For example, a top view is not infative, while a side view is.
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head between successive frames to suppress fatsesal
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Frame at t+2
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Figure 3: Pipeline for head detection and locailirat

For a given framé, head and face, if relevant, are detected usitimaes provided by®" model [44]
and AdaBoost [45] algorithm as implemented in Opén@7]. However, instead of using specific
detection thresholds, we adapted these algoritbrobtain normalised distributions of head positiom
size. Let us denote the distribution @™ model detection and AdaBoost detectionedp)) and AB(p)
respectively, whilg; =(x;, y;) denotes pixel coordinates. Since distributiongnarenalised and only pixels
belonging to the foreground area are consideséul), AB(p) andp; are defined as follows:

a(p;)0[01]
AB(p;)0[01]
€
Op, OA
where A denotes the set of foreground pixels. A combinistridution of w(p;), AB(p) and the SIFT
transferred distributiony(p;), from the previous frame (which is described belisv)hen generated by
normalising the sum of the three distributions.c8ipoints with high values indicate good confideimce

the presence of the head, they are used to impreag detection in the subsequent frame. We inteduc

SIFT-based framework to map these points betweenufrent framd; and the next frami.;. Since SIFT
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performs discrete mapping, confidence associatéd twe transferred points is interpolated to predac
continuous distribution (see next paragraph). @hsgibution will be integrated to the other headettion
distributions, i.ew(p;) andAB(p), of the next frame.

In the current framd;, we extractN points (N=25 in the experimentP*0{(x% , YV}, n=[1..N],
corresponding to thi highest confidence values)in the current distribution and apply SIFT maji46]
to relate the current samples to the next frameT $8 able to detect features points around thesotir
samples and match them to the next frame so thattirent sample®’, can be relocated to new positions
P* O {1 ¥ )} n=[1..N], in the next frame, as shown in Equation 2. Assgrtiie total number of SIFT
feature points detected around each current saiml[sifiih, and the number of SIFT features matched in the
next frame iN™,, we design a transfer function, as defined in Eiqna8 @=0.25 in the experiment), to
convey sample scores from the current frame toéxe frame.

Then a new distribution is generated from the r&tled samples. A Gaussian kernel (Equation 4) i@ use
to expand the sampleskbGaussian distributions and then mix them usingateighting factors o’y to
generate the resultant distributior{p;). In Equation 4COV denotes the covariance matrix controlling
expansion of the relocated samples and is propw@ttio the size of the foreground ar&§ as indicated in
Equation 5. As an isometric Gaussian kernel is usetbnvert a scalar value to a probability density
function, a diagonal matrix is used in EquatiorC5s a constant (0.01 in the experimen{(p;) is then

incorporated with the AdaBoost an@™distributions of the framd;.1, by normalising the sum of the three
distributions to produce a combined distributioattill subsequently be sampled, matched, expaaddd
transferred to the following franfg,. For each frame, the centre of the head is defiydtie point having
the highest score in the combined distribution &mdize is calculated as the weighted averagedfize

detected head from th&" model, AdaBoost and from the previous samplessierred by SIFT. For the

initial frame (o), only two distributionse(p;) andAB(p), are combined agp;) is not yet available.

(X5, Ya) = SIFT (X7, ¥7)) @)
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A0)=3; 2 8, XPE 5 (0 ¥) =0 Y COVHOE ¥) =0y} (9

10
COV =Cx|A |x (5)
0 1

This head detection algorithm has been testedariaty of sequences, see section 6, showing ibean

initialised for a wide range of head orientatiossllstrated on Figure 4.

Figure 4. Results of head detection from variowsdherientations.

The circle and its centre (both in blue) indicdtte $ize and centre of the head.

2.3.Detection of Torso Region
The torso region is detected by modelling a samapterso colours using Gaussian Mixture Modelling
(GMM) as previously used in [48][49][50]. First,ettangular sampling regions” are created around the
position of the head, which has been previouslgatet] (see Figure 5). The area of these regiset i®
50% of the expected torso size, which is estimatgilg a standard body ratio [43], head size and
foreground height. Since the torso must belongeédaoreground, the number of relevant samplingomeg)i

is small (usually 2 or 3, see Figure 5). For eaamming region, a GMM composed of 3 mixtures is



13

estimated by using RGB colour of foreground pixktsvn from the sampling region. A statistical madel
used to reject colour outliers [49]. Then for eaampling region, torso pixel candidates are dedieftten

the foreground by using the trained GMM classifidtmally, sizes of detected candidate regions are
compared to the expected torso size to select tst likely torso region [50]. Figure 6(a) showsoesb

region extracted using the torso region detectiocgdure.

Figure 5: Torso sampling regions (dashed rectahglefined around the head. Only two rectangular

regions (marked in red) are considered becausecthrtgin a sufficient number of foreground pixels.

2.4.Body Model Fitting

(a) (b) () d ©

Figure 6: Stages of body model fitting

The aim of body model fitting is to initialise thmttom-up pose recovery module (see Figure 1) by

providing anthropometric constraints. Two 2D bodydails, full and profile models, introduced in Sewti
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2.1, are fitted separately onto the probabilisticglartitioned foreground pixels by maximising jbin
probabilities between the models and partitionsic&ithe two models bear different anthropometric
constraints, model fitting results in two differamnfidence scores which allow for selection of hle¢ter
model. The fitting is hierarchical, where the madiable parts are fitted first, i.e. head and @apend are
used as references for fitting the limbs. This pescis performed iteratively with an increasingfined

2D model whose limb templates are resized indepehd® accommodate perspective effect according to
the result of the bottom-up process (see SectioBsaAd 4.4). During the first iteration, where the
foreground partitions are not provided, generic et®dre fitted to the foreground by maximising the
overlapping area.

The head is fitted with a circular template wilte tsize and location found in Section 2.2. Sinee th
detected torso region is only based on colour feat(Section 2.3), this region may comprise sorrelpi
which do not belong to the torso, e.g. sleeves ignrE 6(a). In addition, torso coverage may not be
complete. Therefore, the definition of the torsweéfned using a new constraint: a rectangular shap
fitted on the detected torso region adjusting pmsjtorientation, scale and height/width ratio. S8
achieved by maximising the overlap between pixeleiging to the rectangular shape and detectedspixe

of the torso region:

‘ Miorso ﬂ A

\/‘ Amtorso

where ‘ A, ‘ and ‘A

Overlap = P | (6)

pixel torso

. ‘denote the pixel area of the rectangle and the euraobdetected torso

pixel i

pixels respectively. Figure 6(b) shows an examplited head and torso.

Once the head and torso have been fitted, theysa@ as constraints to perform limb fitting. Sittue
process requires optimising position, orientatiomd size of limb templates, it is computationally
expensive. To mitigate this, first, we search far bptimal position and orientation and, then, esize

limb templates independently to accommodate petisgesffects. Since the second step requires upglati
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the body model, it is performed after the bottompupcess in every iteration (see details in Secti@.

The 2D limb templates are translated and rotatéuinvihe search space defined in Table 1 to magimis
the joint probabilities between limb templates amubly partitions. Since in the first iteration the
probabilities of pixels belonging to each body pan are unknown, we set them as uniform. Therfor
the maximisation of the joint probabilities is eealent to finding the maximum overlapping area st
the models and foreground. Although the pose estithimom initial fitting may not be satisfactoryelto
foreground imperfections, it is sufficient to imilise the clustering process which will allow it&vas
between the bottom-up and top-down stages. In sules fittings, where the probabilistic body péotits
are produced by the bottom-up process, the joinibadilities, defined in Equation 15, between thabli
models and partitions are maximised. The joint philities will be discussed in detail in Sectiod 5.

Body model fitting is the most computationally erpive step in our framework since it is based on a
hierarchical exhaustive search. To achieve rea-tmmocessing, the search strategy would need to be
optimised. This could be achieved by using a poseking system: for example, importance sampling
based trackers [51][52] can generate efficientipgas around the most likely body configurations. |
such approach, an annealing framework [52][53] khba integrated to avoid local minima.

Figure 6(c) and (d) show the outcome of fittingtbotodels on the foreground during the first itemati
The algorithm terminates when changes in body jloicdtions estimated from the fitted model between
iterations become negligible. Then two confidenceress, one for each body model, are produced by
concatenating the final joint probabilities of latidy parts (Equation 14). Comparison of these denite

scores allow determining which pose estimate shbeldelected (Figure 6(e)).

2.5.Generation of Probability Density Function
The anthropometric constraints required for bodydehditting are embedded in a set of Gaussian
mixtures which are used to initialise the bottompgse recovery, i.e. probabilistic body part pintit
This embedding is achieved by converting fitted flates (see Section 2.4) to a Probability Density

Function (PDF) of Gaussian mixtures. Assuming thiedody model fitting is considered, fitted body
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templates are expressed{iyhead Morso,Muas Mias Mua, Mha, M, My, Mu, My} and their centres  af@nead,

Miorso, Hiuay Hilas Hruas Urlas Kruls Belly Hiuls ,Ulll}a H, aooe. Equation 7,8and 9 express how the PDF of Gamissi

mixtures are generated.

_ W, 1y 10, —
P(nlnm)—(zm|cow,2exp%2(ﬁln R) COY (4, —p)} 7
- [m, | (8)
R YY

cov = l{CfJS(y) - sin( y)HLi 0 } 9)
sin( y)  cos(y) 0 L?

wherenO {head, torso, lua... lll}. P(m,) denotes the probability of a pix@l, belonging to a template ,
m,, i.e. it is the PDF of the Gaussian mixturdé.is the weight of the@-th mixture, and is proportional to
the size of the template. COV,, in Equation 7, denotes the covariance matrivhefrhixture which is
proportional to the lengths of major and minor akesL, andL’,, of the corresponding elliptical model. In
the cases of the head and torso whose templatemtedliptical,L,, =H/2 andL’ ,=W/2for the torso, and
L.,=L’ .=r for the head, wheitd andW denote the height and width of the torso rectaargeimplate and r is

the radius of the head circular templa®0V, also depends on the angle, betweer., and the horizontal

axis x and a scaling constank, see Equation 9P(p|m,) represents the statistical model of the
anthropometric constraints obtained from the bodgenfitting. Figure 7(a) shows an example of aliti

Gaussian mixture density.

3.BoTtTOM-UP MODULE

The aim of the bottom-up module is to partition theeground probabilistically into a number of body

parts. Here, we assume that the foreground hasreasonably well segmented, although it may contain

2 Apart from head and torso pieces, names are aldeV by 3 letters denoting: “left” or “right”,
“upper” or “lower” and “arm” or “leg”. For the prof ile model, only “ua” and” lIa” are used for denoting
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some imperfections. To achieve the partition of filveground, first, a set of image cues descrilthey
body parts are extracted from the image. Then fiibtic clustering of foreground pixels is perfosth
according to the extracted cues. The followingisest discuss image cue extraction and probabilistic

clustering in detail.

3.1.Image Cue Extraction

In this work, we select location, orientation, nootiand colour as the cues to partition the foreggou
pixels. These cues are collected and concatenatiedture vectors for each foreground pixel. Thisice
of cues aims at producing feature vectors whichibixthomogeneity within the body part and are
distinctively different between adjacent body pa8mice a body part is defined by a continuousofet
pixels, except in some cases of occlusion, pixedtion provides a first low level cue. Moreovermntan
limbs are highly directional objects; hence they ¢ modelled by either sets of parallel lines or
trapeziums [38] whose main orientations describe dinderlying skeleton’s main axes. Therefore,
direction of edges is used as a cue to describg pars. Because the human body is modelled as an
articulated figure, distinctive changes of pixeltmons occur at body part boundaries. Thereforecapti
flow representing pixel motion is used as a cygettition body parts. The final cue for body paetettion
is pixel colour since each body part can usuallynbeelled by either homogenous colour or a low neirmb
of colour patterns [54].

Several image processing technigues have beerogedpto extract the image cues. Locations of the
foreground pixels are obtained by conventional orosegmentation, along with shadow detection and
foreground cleaning [47]. Orientation cues arewaked by populating orientations of main edgegs alle
foreground pixels. First, foreground edges arealeteby Canny Edge Detection. Then these edges are
converted to line segments via Hough transformitaio the main edge orientations and thus remove
spurious edges and noises. Finally, orientatioespapulated to all foreground pixels accordinghe t

proximity between the pixel and line segment. Mottoies consist of two elements — speed and directio

single arm pieces: upper arm and lower arm.
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which are computed by Optical Flow. We adopted sugad Kanade's algorithm [55] to provide dense
motion cues. Noise was suppressed by smoothing) @wsimoving-average-of-5 temporal filter. Since
preliminary experiments [36] showed that the colepace choice did not affect results in body part
detection, colour cues are expressed by RGB values.

Since each individual cue provides only partiatlevice of the presence of body parts, robust body pa
detection can only be achieved by cue combinatiorthe bottom-up pose recovery, body parts are
partitioned using a clustering technique. Clustgisperformed in a high dimensional space, calieel
space, where each foreground pixel is representeoh I8-D feature vectop’ =(x;, ¥, 6;, Vi, 5, ti, G, ),

whose elements are location Y), edge orientatiord], speedy), direction f8), and colourx, g, b).

3.2.Probabilistic Partition of Foreground Pixels
Since our algorithm aims at producing a probaliilisonfidence measure for each estimated pose, the
bottom-up module has to comply with a probabilisticdality. For this reason, Gaussian Mixture Model
(GMM) clustering is adopted. GMMs partition foregra pixels in the cue space into the desired number
of body parts, i.e. 10 for the full model and 8 foe profile model, with soft boundaries. Taking fill

model as an example, a set of 10 probabilitép|C;), jo [1..10] andX P(p|C;)=1, is produced for each
]

foreground pixelp;, indicating the likelihood of a pixel belonging ¢éach of the 10 cluster€;. In our
previous work [36], GMMs were initialised by K-mesanlustering where seeds were provided from the
top-down module. In this work, we propose using@bpbility density function (PDF) (see Section 2.5)
where anthropometric constraints are embeddedtialise GMM clustering. The PDR(p|m,), as shown

in Figure 7(a), which is obtained from Equationallpws GMM clustering to be initialised at the
Maximisation-step of its Expectation-Maximisatio&-1) computation. Then GMM partitions the
foreground pixels according to the 8-D feature @ein the cue space. Figure 7(b) illustrates Hrétpn
result where a 2-standard deviation boundary has Bewn to represent each cluster. Note that iosyzu

cluster located at the left hip should correspanthé left lower arm, which is actually hidden ($égure
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6(b). Fortunately, the poor confidence score assedito that cluster allows identifying this error.

(@) (b)

Figure 7: (a) PDF of Gaussian mixtures initiallypgeated by converting model fitting result. (b)iopsed

GMM clustering resulting from EM optimisation

4.INTEGRATION OF TOPDOWN/BOTTOM-UP MODULES

The integration of top-down/bottom-up modules aaisnproving the accuracy of body model fitting by
incorporating clustering results (see Figure 1jsThachieved by, first, associating body clustersody
parts. Then positions of body joints are extradtech the clusters and used to update the body model
Finally, top-down and bottom-up processes iteratél the body model converges towards a stable
configuration. If convergence is not achieved withicertain number of iterations, this indicated #ither
the other body model should be used or the pas®isomplex to be recovered from the provided camer

view.

4.1. Part Registration

To make the body clusters meaningful, they needetassociated to the body parts. This insures the
anthropometric constraints embedded in the bodyeinaxd linked to correct clusters. This is impottan
especially when two or more body parts are vergelor even overlap on the image plane. The otigina
cluster-body parassociations established at the cluster initiabgastage becomes invalid as centres of

clusters drift during the clustering process. Thew registration is required.
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The optimal one-to-one correspondence betweeN ttlasters and thH body parts is achieved by the
combinatorial maximisation of the sum of joint pabliities between thal cluster/body part pairs. If we
defineC as the ordered list &f clusters, £}, andM; as one of thé&l! possible ordered lists dftemplates
, {m}, the optimal list of templatesM,, which maximises the clusters-body parts assaciais given by

Equation 10:

N
M, =arg maXZ::lP(mM‘[k]ﬂCk) (10)

1<i<N! k
whereM[K] is the K element of the lis¥l; and P(m NC))is the joint cluster-body part probability, which

is defined in Equation 15. To reduce the compoiteii cost of estimatingl,, we restrict our search space
so that only the 3 closest templates (smallestidiad distance between centroids) for each cluster

considered.

4.2.Extracting Body Joints from Body Clusters
After registration, a set of body joints can berasted from the clusters. These joints are imporan
sizes of limbs are derived from them when updatiegoody model. We class body joints within twodgp
distal joints which are the endpoints of kinematic chains suchvasts and anklesntermediate joints
which are joints connecting adjacent body parts, shoulders, elbows, hips and knees. Locations of

intermediate joints are defined as the clustersbabilistic boundaries as expressed in Equation 11:
34 =argmadP(p 1€+ P(p 1G) =[P(p 1€) - P(p 1)) (11)

wherep;, C; andC, denote the foreground pixel and the adjacent etasl, is the intermediate joint
betweerC; andC,. The conditional probabilities are given by GMMistering.

The distal joints are located by using image cgesmetry constraints and, if available, appearance
consistency between adjacent frames. As a firstoxppation, the expected distal joint should be
positioned so that the distal and the adjacentrimgdiate joints are equidistant to the cluster reent
Moreover, since distal joints are defined as erutgadf limbs, they correspond to positions whepelpi

motion and colour changes abruptly. Finally, if puse estimation in the previous frame is succésstu
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indicated by the confidence score, locations ofdis¢éal joints are used to initialise SIFT featusesthat
their recognition in the current frame can contiibto distal joint detection, see Section 2.2. €fae,

distal joint positions can be derived from the maigiation of Equations 12:
3, =argmaxir, (p) +2,(p)+Q(p)+ W, (p)} (12)
“Normalised Colour Edge Map((r, () ) measures the strength of colour change withimage frame.

It is calculated by the following process. FirBg inhput image is decomposed into three single baades
(Red, Green and Blue) and Sobel edge detectiompptieal to each of them to generate three edge

responsesg, (p,) .9, (p,) andg, (p;)). Then, théColour Edge Mag (r(p)) of the image is computed by
taking the maximum edge response, I.@,) = max@, (p,).#,(p,).#,(p,)) - Finally,r,(p) is produced by
normalisingr(p), i-€, I (p,) = (p,)/ max( (p,) -

A(p)denotesNormalised Change-in-Motion Map“Lucas-Kanade optical flow algorithm is applied to
the previous and next frames to generate motiomoxecThey then undergo Sobel edge detection to

generate theChange-in-Motion Map”(a (p))- Finally, standard normalisation is applied togucen (p)-

‘a_ Pi _‘a_Jj—k‘
ST

expresses the geometric constraints of the distatsi c_and J,

Q(pi): -

denote respectively the centre of clugigand the intermediate joint betwe€nandC,. Q(p,) penalises
p estimates which violate equidistance betwegandJ;.

¥\ (p) is the normalised score of SIFT matching. Thissueais only used when the previous frame’s

pose has been recovered successfully (see Segtion 5

The optimalp; is searched frong, to CT+4CT—JH‘ along the extended line Q‘;_k,CT (towards the

limb’s distal end) to maximise Equation 12. Fig8rghows examples of intermediate joints (here, lsleou

and elbow) and the extraction of a distal joiptii.e. wrist).
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Figure 8: Body joint extraction

4.3.Body Model Update

The purpose of extracting body joints from the ®us is to update the body model so that, afteh eac
iteration of the top-down and bottom-up procesbetier body part ratios are estimated to accomreodat
perspective effects. This is achieved by updatiregltody model using the putative body joint logagio
extracted from the clusters. Since head and t@m®plates were located using robust methods, omily li
templates are updated. The length of the limb tataplis resized according to the distance between t
limb joints estimated from the clusters. If we defihe length of a body part in the current iterati, by
L{', wherei {lua, lla, rua, rla, rul, rll, lul, lll} in the full model fitting mode, the updated lengfter an
iteration is calculated using Equation 13.

L' =@-a)L' +a, L, @13

where L. denotes the length of the body part estimated ftenjoint positions extracted from the
associated cluster angl indicates the model updating rate; ranging fromo Zeo updating) to one (full

replacement by.). In our experiments, we set = 0.3.

4.4. Termination Criteria
The succession of clustering and model fitting peses iterates until the positions of joints exé@c

from the fitted body model converge. Convergerscddfined as a joint variation between consecutive
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iterations falling below a predefined consistenigseshold. If this criterion is satisfied within aen
number of iterations, a skeleton, as shown in Eid{e), is then extracted from the final body mada a
probabilistic confidence measure is calculatede@tfse, the pose cannot be recovered for the divdy
model. If none of body models is successful, theepis considered as too complex for being estimated

from a single camera view and is discarded frorthiranalysis.

5.PrROBABILISTIC CONFIDENCEFOR POSE ESTIMATION

5.1.Mathematical Formulation
An important feature of our method is that a cosfide measure is provided for every pose estimate.
This value is useful not only for pose evaluatiom &lso for many applications built upon pose recgy
For example, body part tracking using either KalnaarParticle filter requires a prior probability to
guantify how much an observation can be truste{{$98 Our confidence measure is the probabilitytth
a pose is recovered successfult{pose) If we assume this is determined by the successooivering all

body parts and their associated recovery probegsilare independent, it can be expressed by Equibdio

P( pose) = |_| P(X;) (14)

J
whereP(X) denotes the probability of body paK, to be recovered successfully. We evaluate this by

extending the definition of the overlap measureu@dpn 6) to other body parts.

m m AC
P(X )~ Overlap (m;,C) = . . (15)
ACI‘

where Amj and ACJ_ denote the sets of pixels belonging to the modeim and clusteC; respectively.

Norm | [ | denotes the number of pixels in a set. Therefareedch model pary, | A, |= z 1. Since

p;gm;
the clusterC; is defined by GMM clustering over the entire formgnd pixels,F, its pixel area is

conceptually equivalent to the sum of the probtiediof foreground pixels ZF belonging to that cluster:
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A |- X P(piIC)) (16)

p,OF

Similarly, |A= N Ac,|corresponds to the sum of the probabilities of rhpieels piLm belonging to that

cluster:

A, N A |~ Y P(pIC) (17

p;Om;

Therefore P(X) is expressed by
p;mJP(pi IC)) (18)
\;zlxz P(p, IC))

p;Om; p;OF

P(X,) ~

5.2. Normalisation of Confidence Scores
Confidence scores for the full moddt(pose) and profile model Ryoe(pose) are computed to
determine the most suitable body model for posevway. For accurate comparison, a normalisation
procedure is required as the two scores are foteuilaith different number of body pieces. As shawn
Equation 19, the normalised confidence scdPgg,(pose)and Py (Pose)are generated by considering
the geometric mean of underlying fitting probabekt which consist of different number of body piece

according to the model:

P" (pose) =[P( pose)]% (19)

wherek=10 or 8 for full or profile model fitting respectively.
6.EXPERIMENTAL RESULTS

6.1.Datasets
Three datasets were used to evaluate our poseemcalgorithm: (1) HumanEva | dataset [57] (2)
outdoor walking sequences produced by Hedvig Sideihb{58] and (3) MuHAVi dataset [59]. All are
benchmark datasets used by the computer vision coityrand are publicly accessible.

HumanEva | (HE 1) dataset [57] consists of 4 humidnjects performing 6 types of motions. The datase
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allows quantitative evaluations as it provides btition capture and video data (progressive scageésy

640 x 480 pixels) which were collected synchronpu$herefore, motion capture data can be used as
ground truth: since cameras are calibrated, 3Dpiaitds can be projected on the 2D sequences ar tod
evaluate quantitatively 2D pose estimates. Moreoaestandard set of error metrics [60] is defined t
evaluate pose estimations and an optimised motigmentation algorithm is provided.

[58] contains a female subject performing circuadking and straight line walking (progressive scan
images; 320 x 240 pixels). The outdoor settinghig tataset provides additional values and chadleng
The human silhouettes were extracted and provigdd 4.

The MuHAVi dataset [59] is one of the latest pulyliaccessible dataset for human motion modelling
(interlace scan images; 720 x 576 pixels). It costd4 actors performing a number of primitive e,
including walking, running, kicking and punchinghi$ dataset also provides extracted foreground

silhouettes. Images were deinterlaced before psiicg.

6.2. Interpretation of HumanEVA Ground Truth
Since our algorithm, like many other pose recowagorithms in the literature, is evaluated against
MOCAP ground truth, an important question is whettie ground truth provided by MOCAP data is
consistent to what humans perceive. Since suclsiigation would allow refining the evaluation ofggo
recovery algorithms, an experiment of comparing HnBEva ground truth (HE GT) with human annotated

GT (HA GT) is conducted.

6.2.1Experiment Setting
The aim of this experiment is to evaluate how défins of body joints varies between human
perception and MOCAP data provided in HumanEVAdnTgraduate subjects (4 females and 6 males),
participated in the experiment. The sequeWakl C1_S2 (see Figure 10), is used as the test sequence. It
contains an actor walking in a circular manner #ng it includes a variety of body postures seemfr

different viewpoints. We studied the sequence betwBame 340 and 760 during which the actor
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completes a full circle. Frames were down-sampieBl, bhus a total of 85 frames were manually artedta
by the 10 subjects, who were asked to mark positioh 13 joints on the image using their own
understanding of anthropometry. The joints, i.&k shoulder, L/R elbow, L/R wrist, L/R hip, L/R knee

L/R ankle, and the head centre, correspond to HE GT

6.2.2Results of Evaluating HumanEVA Ground Truth

We use the error metrics defined in HumanEVA to sneathe difference between HA GT and HE GT.
Figure 9 shows the average error (in pixels) asd@ated standard deviation (s.d.) for each jdihuonan
annotations against HE GT. The figure shows nolilsedeviations for the head centre, left hip anhtri
hip. Divergence regarding the position of the hestre was expected since it is not explicitlyired in
the HE GT: it was estimated as the average poditween the top and bottom of head as definedzin H
GT. However, the large error at L/R hip indicatedisagreement regarding hip definition betweendmum
annotators and HE GT. Figure 10 shows the projeatfdhe shoulder points and hip points defineH i
GT onto the image plane. Clearly human annotakin& the hip points are too close to each otheblda
shows the average and standard deviation (s.ekdrof for each annotation and overall annotatidme T
overall average error is 11.0 pixels with a s.d.@fpixels. This provides a baseline for comparisiopose

recovery algorithms evaluated against the HE GT.

Combined human annotation

25

o T T T

Pixelerror

Figure 9:Average error and standard deviation for each joint

from a total of 10 human annotations against HE GT.
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Figure 10: Projection of the HE GT onto the imatgmp: lower green/red crosses, upper green/re@&€s0s

and white cross show locations of the hips GT, kleys GT, and shoulder centre respectively.

Average error Standard

(pixel) deviation
HA 1 11.3 3.9
HA 2 10.9 4.9
HA 3 10.1 2.8
HA 4 12.2 4.8
HA 5 10.2 3.9
HA 6 124 6.7
HA 7 11.8 4.8
HA 8 10.1 3.6
HA 9 9.7 4.4
HA 10 111 4.5
All 11.0 4.2

Table 2: Average error and standard deviation &@hehuman annotation and overall annotation.
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6.3. Quantitative Evaluation of the Pose Estimation Alidpon

6.3.1Evaluation of HumanEVA Walking Sequence

Our pose recovery algorithm was first tested on shkguence used in Section 6.2. This sequence
contains, in total, 420 frames during which theoagtalked a complete circular path (see Figure The
resolution of the image is 640 x 480 pixels andaherage human height is about 350 pixels. Figare 1
presents for each frame the confidence measungssef estimates obtained using either the full {jbdue
profile (red) body models. Since frames 340, 44@ 340 display typical profile, back and profile wig
the better confidence scores correspond to theceeghenodel. On the other hand, frames 640 and &0 a
transition views where model score curves inters€lis confirms our suggestion that the confidence
measure is a useful indicator for selecting thesmirmodel for a given frame.

After selection of the best pose estimates usingidence scores, Figure 12 (a) shows accumulated
number of image frames under defined error margiterding to HE GT. The red, green purple and blue
curves indicate the results obtained from (1) awvipus work [36], which used full model only, (2)
improved fitting of the full and (3) profile modelssing techniques presented in this paper, and (4)
combines (2) and (3) according to the confidenagesxz As can be seen in the figure, by refining the
estimation framework, performances of pose estondthprove as the curve shifts leftwards. We cao al
notice that in this experiment, the profile modehgrally produces more accurate results than thieddy
model. We believe this can be explained by the tfaat a walking motion, where arms swing back and
forth, displays more views where an arm is occlu@man partially) than views where both arms are
visible.

Another capability of confidence scores is to setgmod pose estimates. Figure 12 (b) shows positive
correlation between confidence scores (blue) axel girrors (red). The image frames are ranked Iy bo
confidence scores and errors produced from thesep@stimation, and grouped by defined number of
accumulated frames. Our proposed pose recoveryotheithieves an average error of 19.8 pixels wHen al

pose estimates are considered, i.e. “All” bins. ide&r, when one considers the top 50 frames, i.6%4.2
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of all frames, as selected by our confidence s@raverage error of 16.8 pixels is achieved. We lad¢so
calculated the correlation between the two curvVés.obtained 0.71 for the Pearson Product-Moment
Correlation Coefficient (PMCC) [61], which range®rh +1 (max. positive correlation) to -1 (max.
negative correlation), between confidence scorespaxel errors. The green horizontal line shows the
‘average error’ in human annotation indicating wésatoptimal’ algorithm should aspire to.

Figure 13 illustrates examples of estimated poséscted all from the “top 50” bins according to
confidence scores. Since two body models are ysesks can be recovered in a large variation of
viewpoints. This achieves significant improvemenmini our previous work [36] where poses shown in

profile views were unlikely to be recovered suctabsas only the full body model was used.

6.3.2Evaluation of HumanEVA “Combo” sequence

One of the main characteristics of our algorithiihegt poses can be recovered independently tylee t
of activities. To demonstrate thidumanEVA Comb2_C1 S2 is used. This sequence contains an actor
performing several activities, altering continugukbm one action to another. Here, we are pardidyl
interested in the transitions between actions esiearning-based pose recovery algorithms wouldorot
able to cope with them. To our best knowledge, thithe first quantitative experiment conducted for
evaluation of pose estimation during activity cheng/e consider seven action transitions: Walk-to-ru
run-and-turn, run-to-stop stop-to-short balancdt (leg up), stop-to-short balance (right leg up),
stop-to-long balance (left leg up) and stop-to-ldradance (right leg up). For each transition, 2o
frames were extracted and this resulted in prongs280 frames in total. After processing these seges,
we perform the same quantitative analysis as itiGe6.3.1. The overall average error is 23.7 @Exethile
the top 12.5% of total frames selected accordingotdference scores produces an average error bf 21.
pixels according to HE GT. There is still high adation between group errors of selected frames by
confidence scores and actual errors (PMCC=0.69).

Figure 14 illustrates the quality of estimated oselected according to confidence scores.
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6.4. Qualitative Evaluation of the Pose Estimation Aigun

Qualitative results of pose recovery on an outdeguence [58] and sequences showing various actions
[59] are also provided. The outdoor sequence, agvishn the first row of Figure 15, is particularly
challenging due to uncontrolled lighting conditiand the subject’s clothing whose colour is simitar
human skin. The success of pose recovery onélgisesice emphases the importance of cue combination;
while colour is not discriminative, other cues, Is&s optical flow and edge orientation, providefulse
indication to distinguish body parts. Second aniddtihows of Figure 15 illustrate pose recovery on
primitive actions provided by MuHAVi dataset [59)e. walking, running, punching and kicking. The
algorithm was unable to estimate the static armectlly in kicking sequence as colour, motion andpi
location fail to provide discriminative cues. Thenfidence score of pose recovery on this sequence i
relatively low compared to that of other sequerasesone of the clusters can be matched accuratéhgt
arm model. Therefore, a low fitting score of thmas produced and results in an overall low confie
score for the estimated pose according to Equatin Despite this, the estimated poses are still
informative if the “confidence scores” of individuanbs are considered (see Section 7). In contthst
pose recovery on walking, running, and punchingsaiezessful, because pixel motion provides a useful

cue for body part segmentation even though co®anibiguous.



31

6.5. Summary of Evaluation

Our pose estimation method does not require amyiigaand produce quantitatively and qualitatively
convincing results. Although recent learning baapproaches [62][63][64][31] achieve 5-15 pixelsoerr
for HumanEVA datasets, they are constrained by being able to estimate poses with activities with
which they have been trained. Therefore, theseoagpes cannot be applied in realistic day-to-day
scenarios with natural human motions, such as tadhEVA “Combo sequence” (see Section 6.3.2).
While several other activity independent approadiese been suggested [34][35][38], they only report
visual qualitative results, which do not allow alijee comparisons. We should mention that activity
independent pose tracking has also been proposkdeated on HE | dataset [56]. They achieved an
average error of 13.2 pixels for this easier tablctvrelies on manual initialisation and where thegume
the character is performing bipedal motion.

Since learning-based approaches usually learn szl on MOCAP data (for example, the Ground
Truth provided by HumanEVA), they usually have aifige bias towards the references they have lelarne
from. On the other hand, our method uses visua similar to the ones perceived by humans and tased
recognise body postures. Therefore, comparisoruofresults with MOCAP based Ground Truth may

result in larger errors than with body joint paits estimated by human beings as discussed iro8écH.

7.CONCLUSIONS ANDFUTUREWORK

In this paper, a hovel probabilistic bottom-up/tbgpan 2D pose recovery framework is proposed.dhis
iterative process between a bottom-up stage, whanttitions the foreground probabilistically using
relevant image cues, and a top-down stage, whidonoes a hierarchical body model fitting to consira
segmented body partitions. Since a suitable detcaf image cues is exploited to extract charasties of
body parts, there is no need for training posess€quently, our approach is totally activity-indegent.
Since both bottom-up and top-down processes areslteddprobabilistically using Gaussian mixtures, a

confidence score is generated for evaluation ofsthecess of pose estimation. Our method has been
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validated by various human motion sequences camgist a wide range of activities, camera viewpsint
within both indoor and outdoor scenarios. In additiwe identified some discrepancy between Ground
Truth joint positions according to whether they deéined by humans or a motion capture system.

As results demonstrate, first, our confidence mesaptedicts the accuracy of recovered postures and,
secondly, our method is able to estimate reliablguhstantial number of 2D poses. Therefore, the
presented framework appears particularly suitedregular (re-)initialisations of body trackers
[56][62][63]. Even in cases that full pose recoverynavailable, such as in the recovery of thé&ikig
sequence shown in the last row of Figure 15, daniigalisation can still be achieved: since tlmmtidence
score is the product of each limb’s fitting scadsacker can be partially initialised across ddfé frames
where individual limbs are estimated accurately.

In future work, we intend to integrate our framekavithin a pose tracking system to increase its
usability. Not only could poses, which currentlynnat be recovered, be estimated by the tracker, but
tracker predictions could contribute to pose eu#duna This would lead to smoother and continuous
recovery of poses for a video sequence. Moreovaceswe want to target real time applications,

optimisation of the search strategies used inrdm@déwork is required.
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Figure 12: (a) Accumulative curve showing the agerpixel error between the estimated joint location
and HE GT. Results of our previous work [36], fighiof the full model with the advanced techniquéng

of the profile model with the advanced technique tre combination of full and profile model fittirge
presented with red, green purple and blue curnagsexively. (b) Average pixel error of cumulated@o
estimates. Blue and red curves show image framgsdsby confidence scores and actual pixel errors

respectively. Green line represents errors in huamenotation with s.d. shown as error bars.

Figure 13: Results of pose recovery for HE | wadiksequence [57]. Head and torso are shown by awell
circle and rectangle. Yellow line segments anddsalicles indicate the limbs and body joints;

Crosses represent joints defined by HE GT.
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Figure 14 Results of pose recovery for HE | “Combo” sequdbd@. Head and torso are shown by a circle

and rectangle. Yellow line segments and yellowdsolicles indicate the limbs and body joints.

Figure 15: First row: results of pose recoverylom dutdoor circular walking sequence [58].

Second row: results of pose recovery on straigigfialking (£ half) and running (¥ half).

Third row: results of pose recovery on kicking' fialf) and punching (2 half).
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