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Abstract. We introduce a novel approach to automatically learn intu-
itive and compact descriptors of human body motions for activity recog-
nition. Each action descriptor is produced, first, by applying Temporal
Laplacian Eigenmaps to view-dependent videos in order to produce a
stylistic invariant embedded manifold for each view separately. Then,
all view-dependent manifolds are automatically combined to discover a
unified representation which model in a single three dimensional space
an action independently from style and viewpoint. In addition, a bidi-
rectional nonlinear mapping function is incorporated to allow projecting
actions between original and embedded spaces. The proposed framework
is evaluated on a real and challenging dataset (IXMAS), which is com-
posed of a variety of actions seen from arbitrary viewpoints. Experimen-
tal results demonstrate robustness against style and view variation and
match the most accurate action recognition method.
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1 Introduction

Since video recording devices have become ubiquitous, the automated analysis
of human activity from a single video is now an essential area of research in
computer vision. Applications for such technology include video surveillance,
indexing of film archives, sports video analysis and human-computer interactions.

Variability in human shape, appearance, posture and individual style in per-
forming some motion makes the unified description of a given action difficult. In
addition, camera view, perspective and scene environment have a critical impact
on the aspect of recorded data. Consequently, the task of action recognition from
a single video is extremely challenging. In this paper, we propose a solution which
deals with this complexity within a single powerful framework. It allows accu-
rate action recognition from a single uncalibrated camera in a fully automatic
approach which exhibits high robustness to action style and view variation.

Previous work in this field falls into two categories: view-dependent and view-
independent approaches. View-dependent methods assume that all actions are
recorded from a fixed viewpoint [3, 7, 9, 1]. The standard approach uses temporal
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templates to represent an action by encoding the history of silhouette deforma-
tion over time [3]. Actions were also described in the space-time domain. Local
space-time features were extracted from the volumetric space-time action shape
derived from sequence silhouettes by solving the Poisson equation [7]. Alter-
natively, the structure of local 3D patches was analysed by extending interest
points into the spatio-temporal domain [9]. Moreover, by taking into account
dynamics, action descriptors were defined in terms of chaotic invariant features
from joint tracking [1]. Although these approaches have proved very accurate,
the fact they rely on videos captured from a specific view limits their practicality
in real world scenarios.

As a consequence, many researchers focused on multiple camera systems to
achieve view-invariant action recognition. For instance, 2D temporal templates
were extended into 3D motion history volumes [27]. If point correspondences
between actions are assumed to be known, then either epipolar geometry [29]
or projective invariants of coplanar landmark points can be exploited [19]. The
main drawback of these methods is that, since they all require multiple cameras
setups, they can only be applied in a controlled environment.

More recently, research has tackled the task of action recognition from an
arbitrary view, i.e. from a single video, where multi camera data are used for
training. Typically, a database of exemplars from different views is created to
recognise actions based on the best matching score. Although silhouettes can
be used to represent an action, their intrinsic ambiguity leads to high density
sampling of the view space to obtain accurate results [18]. In contrast, richer
action descriptors based on 3D exemplars represented by visual hulls and hid-
den Markov model allow reducing significantly the size of action templates [25].
Consequently, matching between observation and exemplars has to be performed
in 2D by projecting visual hulls. Since such projection from high dimensional
space to low dimensional is multimodal, it impacts on the quality of the recog-
nition rate [25]. Junejo et al. [8] proposed to represent image sequences using
self-similarity based descriptors which are fairly stable under view variation and
characterises well the dynamics of the scene. However, this approach relies on
the rough localisation and tracking of people in the video [8]. In [28], a video
is represented by a combination of 3D visual hulls with spatio-temporal vol-
umes to build 4-dimensional action feature models. Alternatively, a video can
be described as a bag of spatio-temporal features called video-words (BOW) by
quantising extracted 3D points of interest [16]. Initially, a SVM was trained on
BOW to recognise actions [16], but this feature was also extended with a bag of
spin-images [15]. Although these schemes perform accurate action recognition,
the absence of continuous action model limits their applicability.

The methods most closely related to our approach model activities by re-
ducing dimensionality of each sequence to obtain view-invariant manifold rep-
resentations [21, 6, 5]. [21] used R-transform as a descriptor and Isomap [23] for
dimensionality reduction, whereas [5, 6] chose implicit distance function represen-
tation and locally linear embedding [22]. In these approaches [21, 5], generative
view-independent functions are designed to interpolate between intermediate
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views. This generative function was also extended to handle stylistic variation
of data [6, 5]. However, due to the limitations of the chosen dimensionality re-
duction methods, none of these approaches managed to produce consistent style
invariant representations, i.e. representations which are valid for a variety of
individuals. Consequently, the accuracy of their systems was limited. This prob-
lem was addressed be applying non-rigid transformation [17] to artificially unify
manifold representations of different people [21, 6]. However, since such trans-
formation affects manifold geometry, they may no longer reflect relationships
between points in the high dimensional space. Alternatively, in [5] the topologi-
cal structure of a torus was artificially constrained on the manifold to explicitly
deal with stylistic variation instead of being learned from the data.

The main contribution of this paper is a new continuous view and style invari-
ant action descriptor in a form of an Action Manifold. The proposed descriptor
overcomes above limitations, since, not only, it is obtained automatically from
labelled training data, but it encapsulates both style and view in a coherent
torus-like two-dimensional manifold. The novel procedure used for generating
torus-like descriptors takes advantage of several advanced techniques which have
never been used in a view independent action recognition. They include Tempo-
ral Laplacian Eigenmaps [14] (TLE), Decomposable Generative Model [12] and
Poisson Equation [7]. In addition, the method used for determining repetition
neighbourhood in the TLE algorithm has been refined to handle for complex
and dynamic videos of human actions. Finally, our descriptors are validated in
a challenging real-life scenario of a view independent action recognition.

The structure of this paper is organised as follows. First, we describe our
framework. This includes the processes of view-dependent discovery, view-in-
dependent manifold construction and mapping and a brief description of the
dimensionality reduction algorithm. Secondly, the framework is validated quan-
titatively on a real dataset of human actions. Finally, conclusions and future
work are presented.

2 View and Style-Independent Action Manifold

An action can be implicitly defined by a set of videos of a variety of people
performing similar movements seen from different cameras. In our work, we aim
to produce a single compact and informative model, i.e. action manifold, which
represents an action independently from camera views and individuals’ styles.

In our framework, the set of videos defining an action includes a variety
of individuals, each of them captured on their own by a set of calibrated and
synchronised cameras. Moreover, for each action, a video is labelled as a good
representative; usually it is captured from a side view. We do not impose restric-
tions regarding video length variability for a given action and an individual may
perform an action several times.

Let Y denote the set of N videos defining an action performed by different
people and captured from different views. For a given view, action repetitions
and variability of people define action style. Therefore, Y can be defined as Y =



4 View and Style-Independent Action Manifolds

{Y sv}(s=1..Ns,v=1..Nv), where v denotes the view class index and s is the style
index. Each frame y of video is represented by D pixels: Y sv = {ysvi }(i=1..T sv),
ysvi ∈ RD, where T sv is the number of frames in the sequence. Fig. 1 summarises
the processing pipeline used to produce a unified and compact action model,
X, of dimension d ≪ D, defined by X = {Xsv}(s=1..Ns,v=1..Nv), where Xsv =

{xsvi }(i=1..T sv) and xsvi ∈ Rd.
Our algorithm is divided into two parts. First, view-dependent analysis of

action data generates a style invariant action model for each view. This is per-
formed using Temporal Laplacian Eigenmaps, a dimension reduction algorithm
with excellent generalisation properties [14]. Then, these models are combined to
learn a single compact and view invariant generative model of the action using
generative decomposable model [12]. Fig. 1 provides an overview of our method.

2.1 View-dependent manifold

Pre-processing and shape representation A frame ysvi is generally defined
by grey scale or colour pixel values. This very high dimensional description makes
the process of learning an activity model from a frame sequence costly and
inaccurate. However, many studies [18, 25, 5, 6, 12] have revealed that a binary
representation of moving objects, i.e. silhouettes, are sufficient to capture the
activity described by a frame sequence. Consequently, we adopt this approach
in our framework.

We extract binary silhouettes ysvi from each video by a standard background
subtraction technique which models each pixel as a Gaussian in RGB space
[27]. When videos consist of multiple instances of a given motion, temporal
segmentation is required to extract elementary motion segments Y sv [26, 4].

All silhouettes are normalised to deal with translation and scale variations
by using the largest silhouette square bounding box available within the entire
action dataset. In order to improve the quality of the normalised silhouettes, two
morphological operations, i.e. bridge and open, and a median filter are applied.
Lengths of all sequences Y sv are also normalised to match the length of the
shortest sequence T ’ in the set Y using the standard bicubic spline interpolation
technique.

A sequence of binary silhouettes can be considered as a space-time shape
surrounded by a closed surface [7]. This allows representing each silhouette by
a local space-time saliency feature extracted from the solution of the Poisson
equation of the corresponding volumetric surface, which takes into account the
time domain [7]. This representation assigns highest gradient values within fast
moving limbs which are much more informative for identifying actions, whereas
torso has relatively smaller values inside (Fig. 1). As a consequence, such descrip-
tor is significantly more powerful than binary representation [7] and essential,
as it will be shown later, in the procedure allowing the selection of the TLE
repetition neighbourhoods.

Dimensionality reduction Even with the generation of the previously de-
scribed shape descriptor, the high dimension of Y remains unsuitable for anal-
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Fig. 1. Description of the action recognition framework for the ”point” action.

ysis. Consequently, we propose to produce an informative and unified model of
the action using a nonlinear dimensionality reduction method. However, most
of these techniques [23, 22, 2, 11] cannot handle large variations within a dataset
such as an action performed by different people. As a result, they tend to cap-
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ture the intrinsic structure of each manifold separately without generalisation.
Consequently, the common embedded space shows separate and highly distorted
manifolds. To deal with this fundamental issue, in this work we use the TLE
algorithm which shows excellent generalisation properties [14].

TLE is an unsupervised nonlinear method for dimensionality reduction des-
ignated for time series data. It aims to preserve the temporal structure of data
manifolds by introducing the concept of simultaneous exploitation of two types of
neighbourhood graphs, which express implicitly temporal dependencies between
data points. In our framework both graphs are constructed for the view Y v′

which was labelled as a good representative. Each graph is based on a different
definition of neighbour:

a. Adjacent temporal neighbours (A): the next and previous closest points in
the sequential order of input.

b. Repetition temporal neighbours (R): the points similar to input but ex-
tracted from the different repetitions of activity which may vary in style.
The number of R neighbours should match the number of styles Ns con-
tained in the training set Y v′.

The process of dimensionality reduction can be summarised briefly by the
following steps. First, view-dependent weights W v are assigned to the edges of
graph G′ ∈ {A,R} to construct graphs for all views Gv using the standard LE
formulation [2]. Then for each view the extended cost function is defined to
combine information from both graphs:

argminXv ((Xv)TLvAX
v + (Xv)TLvRX

v) (1)

subject to (Xv)TDv
AX

v + (Xv)TDv
RX

v = I (2)

whereDv,G = diag{Dv,G
11 , Dv,G

22 , , Dv,G
TvTv} is a diagonal matrix with entriesDv,G

ii =∑Tv

j=1W
v,G
ij , and LvG = Dv,G −W v,G is the Laplacian matrix. The minimum of

the objective function can be found by applying Lagrange multipliers to Eq. 1
subject to the constraint expressed by Eq. 2 and solving the generalised eigen-
value problem:

(LvA + LvR)Xv = �(Dv
A +Dv

R)Xv (3)

The embedded space Xv is spanned by the eigenvectors given by the d smallest
nonzero eigenvalues � (d = 2). The output of this stage is a view-dependent and
style-independent one-dimensional action manifold Xv (Fig. 1 and 2b).

Selection of repetition temporal neighbourhood The size of the repetition
neighbourhood corresponds to the number of times an activity is repeated in the
training set. Although video lengths were normalised for each action, it cannot
be assumed that these videos are synchronous for two reasons. Firstly, they may
start on different posture and, secondly, due to style variations, there may not be
frame to frame correspondences between two action instances. Consequently, the
estimation of the size and location of the repetition neighbourhood is essential.



View and Style-Independent Action Manifolds 7

We automatically determine the optimal repetition neighbourhood by adopting
the action detection procedure proposed in [7]. This schema is used to find similar
motion patterns in each sequence of the training set from which R neighbours
can be extracted (see lower part of Fig. 1).

First, the local space-time saliency shape descriptor defined in section 2.1
is extended with a local space-time saliency feature which is composed of 6
local space-time orientation attributes [7]. This allows indentifying regions with
vertical, horizontal, and temporal ”plates” and ”sticks” within body and define
orientation local features. Fig. 1 illustrates an example of ”plate” and ”stick”
local features for a good representative view. Blue, red, and green colour regions
correspond to temporal, horizontal, and vertical directions of local ”plates” and
”sticks” [7].

In the next step, a space-time cube is associated to each frame yv′i in a
sequence Y v′ by sliding a warping window in time. The cube, i.e. the global space-
time descriptor, combines local shape and orientations features using weighted
moments of the form [7]:

moqr =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

w(px, py, t)g(px, py, t)p
o
xp
q
yt
rdpxdpydt (4)

where px,py are pixels coordinates, g(px, py, t) denotes the characteristic func-
tion of the space-time shape, w(px, py, t) is one of the seven possible weighting
functions which corresponds to local features. As suggested in [7], spatial and
time moments are considered up to order o+ q ≤ 2 and r ≤ 2 respectively. Each
space-time cube is centred around its space-time centroid and uniformaly scaled
to preserve spatial aspect ratio.

Secondly, we calculate the matrix M (Nv × Nv) of Euclidean distances be-
tween all space-times cubes among all sequences for a particular view. To em-
phasise continuity and temporal coherence of the underlying action between
sequentially adjacent points in time, we perform temporal windowing of matrix
M by averaging distances through time within boundaries of each sequence. This
implicitly leads to introducing a temporal history into each data point.

Finally, for each cube we look for the most similar motion pattern in each
different repetition of activity based on M. The centre point of each most similar
space-time cube becomes a repetition neighbour.

Because of possible substantial differences in speed and imperfect segmenta-
tion of action, the repetition neighbours may still not align coherently along time
what may result in distortions in the embedded space. To address this problem,
we incorporated a neighbourhood refinement procedure. In principle, we accept
only these R neighbours for given point P which are within specific range from
a corresponding point in each other sequence:

R′ = {P(i−1)∗T+1 − T ′ ≤ Rj ≤ PiT + T ′}, i = 2..Ns, j = 1..Ns (5)

where T ′ is defined as 10% of the normalised sequence length T. As it was
mentioned earlier, the entire procedure is performed only once per action for
the most discriminative view, because the temporal structure of an action is not
view-dependent.
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2.2 View-independent manifold

Generation of a view-independent topological structure Discovery of a
compact representation of any human activity requires modelling both the view
and body configuration jointly in a single space. Here we assume that human
motion is observed from different viewpoints along a view circle at fixed camera
height. Although such cylindrical setting appears limited, its robustness to view
elevation variations, up to 45 degrees as shown in experimental section, makes it
appropriate for many real life applications such as visual surveillance and sport
analysis [5]. it is important to note that this configuration is not critical to our
framework since it can easily be extended to a full view sphere-like model using
training videos captured from different camera heights.

In section 2.1 style invariant body configuration manifolds were discovered
for each view. Since the embedded spaces share the same topology regardless of
the view, see Fig. 1 and 2b, for a given posture there is a unique correspondence
on each of these manifolds. Consequently, the connection of those corresponding
points in the order of view angle values creates a closed one dimensional manifold
(topologically equivalent to a circle) which is the view-independent embedded
space of the posture. Therefore, we define the unified representation of an activity
as the combined space of the two sets of continuous one dimensional manifolds,
i.e. posture and view, which are placed orthogonally to each other.

The process of producing the unified manifold comprises two steps. First,
the view-dependent representations are combined: the embedded spaces Xv are
aligned with respect to a good representative Xv′ using Procrustes analysis
[24]. Since this is a rigid transformation of the spaces, the internal structure
of each manifold is not changed. Secondly, each embedded representation Xv is
aligned into a three-dimensional structure according to the view angle parameter
�v ∈ [0, 2�]. The outcome of this procedure reveals a torus-like structure which
encapsulates both style and view (Fig. 1 and 2c). We called this structure a view
and style-independent action manifold. This result is in line with previous work
[5], where the usage of a torus is justified as an ideal representation for modelling

Fig. 2. Training results for quasi periodic action ”check watch” (left) and non periodic
action ”sit down” (right): a) training videos; b) style-independent low dimensional
representation for each view; c) style and view-independent manifolds.
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both the viewpoint and the body configuration of different activities. However,
while, in that work, the topological correspondence between data points Y and
an ideal torus is artificially enforced, in our approach, the torus-like represen-
tation reflects the temporal structure of the view-dependent data. Therefore, in
our approach all types of motions, i.e. periodic, quasi-periodic and non-periodic,
see Fig. 2, can be handled using the same framework.

2.3 Manifold mapping

Mapping function In the previous section, view descriptors have been com-
bined to form a unique view-independent action manifold. Since TLE is a spectral
dimensionality reduction method, there is no mapping function between initial
and embedded spaces. However, the ability to project data points from one space
to the other is required for classification.

In order to provide a single projection function which allows dealing not only
with stylistic variations, but also view changes, a decomposable generative model
is learned [12]. This model aims at separating the intrinsic action configuration
from other factors such as the motion style and view. Following [12] approach,
the generative mapping function is modelled using three factors:

– Content C : a representation of the intrinsic body configuration which char-
acterises motion as a function of time. It is invariant to either person or
view.

– Style S : a time-invariant person parameter which describes the person ap-
pearance, shape and motion style.

– View point V : a time-invariant view parameter which characterises the view
point from which the performed action is captured.

In our framework, content is represented by a continuous manifold while style
and view are represented by the discrete classes present in the training data. For
the last two factors, intermediate states can be interpolated. As a result, we are
able to approximate view and style continuity. In addition, we assume that both
style and view factors are time-invariant, i.e. both parameters remain constant
during any instance of an action.

The procedure of fitting the decomposable generative model to the data con-
sists of two steps. First, a set of style and view-dependent functions is trained.
Then, all functions are combined into a single style and view-independent pro-
jection function.

Since mapping between the embedded manifold and the original space is
highly nonlinear, generalised Radial Basis Function network [12] is applied to
provide the nonlinear view-dependent mapping. It is expressed by Ns style-
dependent mapping functions:

ysv = Bsv ∗ 	(xsv) (6)

where B is a D × E matrix of mapping coefficients. The kernel vector  (▪) is
defined by:

	(xsv) = [�(∥ xsv − z1 ∥)..�(∥ xsv − zE ∥) 1 xsv]T (7)
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where Z = {zi}(i=1..E) is a set of distinctive representative points in each embed-
ded space and �(▪) is a radial basis function; here we use a thin plate spline. Bsv

is calculated by applying the Moore-Penrose pseudo-inverse on matrix  (Xsv)
and solving a linear system of equations: Bsv = Y sv ∗  (Xsv)+ like in [12]. The
set Z is obtained by calculating a mean style and view manifold, which is then
transformed by a non-rigid point registration procedure, called Coherent Point
Drift [17], to better fit the data.

The final view-independent decomposable generative model is obtained by
multi-linear tensor analysis in the space of nonlinear mapping coefficients [12].
Each coefficient matrix Bsv is represented as the coefficient vector bsv of dimen-
sionality Ne = D ∗ E by column wise stacking (columns of the matrix are con-
catenated to form a vector). Afterwards, all coefficient vectors bsv are arranged
in an order three coefficient tensor B whose dimensionality is Ns×Nv×Ne. The
view and style orthogonal factors are decomposed from the assembled coefficient
tensor B using higher order singular value decomposition [10]:

B = C ×1 S ×2 V ×3 F = G×1 S ×2 V (8)

where S (Ns×Ns) is the mode-1 basis of B, which represents the orthogonal basis
for the style space. Similarly, V (Nv×Nv) is the mode-2 basis matrix which spans
the space of viewpoint parameters and F (Ne ×Ns ∗Nv) represents the mode-3
basis for the mapping coefficient space. C is a core tensor (Ns×Nv×Ne) which
governs the interactions between orthogonal factors represented in mode basis
matrices. Coefficient eigenmodes G is a new core tensor formed by G = C ×3 F
whose dimensionality is Ns ×Nv ×Ne. Mode-i is a tensor product as defined in
[10]. As the result, view-independent and style-independent projection function
is expressed by equation y = B ∗ 	(x).

Action recognition The task is performed by projecting a motion sequence
into each action descriptor using the generative decomposable model presented in
the previous section. Then, the dynamic time warping distance [20] is calculated
to measure similarity between actions.

Given a new instance of action Ỹ sv, its length is first normalised as described
in section 2.1. Then the embedded coordinates X̃sv of the new action are ob-
tained by least square solution of the following nonlinear system:

argminB	 ∥ Ỹ sv − B̃sv	(X̃sv) ∥ (9)

It’s minimum solution can be found by determining and optimising coefficient
matrix B̃sv given a learned model and then projecting data by solving a linear
system of equations using the Moore-Penrose pseudo-inverse :

	(X̃sv) = (B̃sv)+ ∗ Ỹ sv (10)

Coordinates of X̃sv are provided by the last d rows of the matrix 	(X̃sv). In
order to determine the optimal coefficient matrix B̃sv, we adopt an iterative
procedure [12]. First, we calculate a mean view manifold Z over all aligned
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mean styles manifolds Zv to obtain a homeomorphic manifold [12]. Then, the
coefficient matrix is initialised by solving the following equation:

B̃sv = Ỹ sv ∗ 	(Z)+ (11)

Let’s b̃sv denote a vector obtained by column wise stacking of matrix B̃sv.
Then given a mapping model as described in the previous section and any style
vector, s̃, and any view vector ṽ, we can define a coefficient vector b̃sv by the
tensor product bs̃ṽ = G×1 s̃×2 ṽ.

Mapping coefficients b̃sv can be optimised to reflect style and view of a new
instance action Ỹ sv by minimising the following error:

argmins̃ṽ ∥ bs̃ṽ −G×1 s̃×2 ṽ ∥ (12)

where G is derived from learning (equation 8). Since tensor G represents the
intrinsic body configuration ’content’ of the considered action and manages in-
teractions between all factors, an accurate solution for style and view can only
be reach for the same action.

If the style vector, s̃ is known we can obtain a closed form solution for ṽ and
vice versa. This leads to an iterative procedure for estimating s̃ and ṽ simulta-
neously until equation 12 converges [12]. In practice, we follow Lee’s approach
where s̃ is initialised with a mean style estimate. Since the view classes are dis-
crete, we identify the closest view class and use it to estimate s̃. Finally, vector
b̃sv is unstacked to create matrix B̃sv; then the action Ỹ sv is embedded into the
low dimensional space using equation 10.

3 Experimental results

3.1 Experimental setup

The proposed framework was validated on the publicly available multi-view IX-
MAS dataset [27, 25], which is considered as the benchmark for action recognition
methods. Since the ’throw action’ is not performed by all subjects, we excluded it
from our experiments. As a result, the chosen dataset is comprised of 12 actions,
performed 3 times by 12 different actors. Each of these 432 activity instances was
recorded simultaneously by 5 calibrated cameras, and a reconstructed 3D visual
hull is provided. In this dataset, actors’ positions and orientations are arbitrary
since no specific instruction was given during acquisition. As a consequence, the
action viewpoints are arbitrary and unknown.

To obtain a dense set of action descriptors regarding viewpoints for training,
we followed [21] approach where the animated visual hulls are projected onto 12
evenly spaced virtual cameras located around the vertical axis of the subject. In
line with other experiments made on this dataset [16, 15, 28], the top view was
discarded for testing.

Experiments are conducted using the leave-one-out strategy followed by [28,
8, 25, 21]. In each run, we select one actor for testing and all remaining subjects
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for training. Two testing schemes were used: recognition using single view, and
recognition using multiple views. In the recognition from multiple views, a simple
majority voting rule was applied [16, 15]. Finally, performances were compared
to the other state of art methods. Unfortunately, results could not be compared
with [21], because, instead of evaluating their method with original video data,
they did it by using projections of the visual hulls.

3.2 Performances

Although different approaches may use slightly different experimental settings,
table 1 shows that our framework produces state of art performances. Accuracy
rates obtained for an experiment aiming at only 11 actions, i.e. the ’point’ action
was not considered, reveals that we outperform all methods targeting this task
[28, 8, 25] even if they considered a smaller set of subjects [8, 25].

When all actions completed by all subjects are considered, i.e. 12, our frame-
work displays results which are significantly better than Liu [15] and match those
obtained by Liu [16]. Although performance alone cannot discriminate between
Liu’s and our method, we believe that our action models are superior. Indeed,
unlike Liu’s descriptors which are based on codebooks, ours consists of single
integrated continuous models. Consequently, our action manifolds can be ap-
plied to many applications beyond action recognition such as synthetic action
sequence generation, style recognition and camera view estimation.

Fig. 3 depicts the confusion matrix of recognition for the ’all-view’ experi-
ment. It reveals that our framework performed better when dealing with motions
involving the whole body, i.e. ”walk”, ”sit down”, ”get up”, ”turn around” and
”pick up”. Since temporal information is essential when dealing with highly dy-
namic motions and TLE aims at preserving temporal structure in each view,
action manifolds of those activities are more representative. The best recogni-
tion rates 74.8%, 80.3% are obtained for camera 2 and 4 respectively. This was
expected, since both views are the most similar among those used for training.
Moreover, when dealing with either different, i.e. camera 1, or even significantly
different views, i.e. camera 3, our framework still achieves reasonable recognition,

Table 1. Average recognition accuracy over all cameras (top view excluded) using
either single or multiple views for testing.

% Subjects Actions
Average Accuracy

Single view All views

Weinland [25] 10 11 63.9 81.3

Yan [28] 12 11 64.0 78.0

Junejo [8] 10 11 74.1 -

Our 12 11 75.0 83.1

Liu [15] 12 13 71.7 78.5

Liu [16] 12 13 73.7 82.8

Our 12 12 73.2 83.1
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Fig. 3. Class-confusion matrix using multiple views. The average performance is 83.1%.

i.e. 71.7% and 65.9% respectively. Details about average accuracy per camera
can be found in supplementary material [13].

4 Conclusion

This paper introduces a novel human action recognition framework for arbi-
trary individuals and views. Its main contribution is a procedure for learning
discriminative and unified action descriptors, which reside in a low dimensional
space. These descriptors are constructed automatically by taking advantage of
the TLE algorithm and a generative decomposable model. Performance of the
proposed methodology has been evaluated using the IXMAS dataset and com-
petitive results have been demonstrated. In addition, since our procedure to
produce manifold based descriptor is general, it can be applied to many appli-
cations beyond action recognition such as visual surveillance or sport analysis.
We plan to investigate some of these directions in future work.
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8. Junejo, I., Dexter, E., Laptev, I., Pérez, P.: Cross-view action recognition from

temporal self-similarities. ECCV 12 (2008)
9. Laptev, I.: On space-time interest points. IJCV 64(2), 107–123 (2005)

10. Lathauwer, L., Moor, B., Vandewalle, J.: A multilinear singular value decomposi-
tion. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

11. Lawrence, N.: Gaussian process latent variable models for visualisation of high
dimensional data. NIPS 16 (2004)

12. Lee, C., Elgammal, A.: Homeomorphic manifold analysis: Learning decomposable
generative models for human motion analysis. WDV06 pp. 100–114 (2006)

13. Lewandowski, M., Makris, D., Nebel, J.C.: Average recognition rates using single
views. (2010), supplied as additional material avgrecrates.tif

14. Lewandowski, M., Martinez-del Rincon, J., Makris, D., Nebel, J.C.: Temporal ex-
tension of laplacian eigenmaps for unsupervised dimensionality reduction of time
series. Proc. ICPR (2010)

15. Liu, J., Ali, S., Shah, M.: Recognizing human actions using multiple features.
CVPR (2008)

16. Liu, J., Shah, M.: Learning human actions via information maximization. CVPR
(2008)

17. Myronenko, A., Song, X., Carreira-Perpinán, M.: Non-rigid point set registration:
Coherent Point Drift. NIPS 19, 1009 (2007)

18. Ogale, A., Karapurkar, A., Aloimonos, Y.: View-invariant modeling and recognition
of human actions using grammars. W. on Dyn. Vis. at ICCV 5 (2005)

19. Parameswaran, V., Chellappa, R.: View invariance for human action recognition.
IJCV 66(1), 83–101 (2006)

20. Rabiner, L., Juang, B.H.: Fundamentals of speech recognition (1993)
21. Richard, S., Kyle, P.: Viewpoint Manifolds for Action Recognition. EURASIP J.

on Img. and Vid. Proc. 2009 (2009)
22. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embed-

ding. Science 290(5500), 2323–2326 (2000)
23. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear

dimensionality reduction. Science 290(5500), 2319–2323 (2000)
24. Wang, C., Mahadevan, S.: Manifold alignment using Procrustes analysis. ICML

pp. 1120–1127 (2008)
25. Weinland, D., Boyer, E., Ronfard, R.: Action recognition from arbitrary views

using 3d exemplars. ICCV 5(7), 8 (2007)
26. Weinland, D., Ronfard, R., Boyer, E.: Automatic discovery of action taxonomies

from multiple views. CVPR 2, 1639–1645 (2006)
27. Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using

motion history volumes. Computer Vision and Image Understanding 104(2-3), 249–
257 (2006)

28. Yan, P., Khan, S., Shah, M.: Learning 4D action feature models for arbitrary view
action recognition. CVPR 12 (2008)

29. Yilmaz, A., Shah, M.: Recognizing human actions in videos acquired by uncali-
brated moving cameras. ICCV 1, 150–157 (2005)


