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Abstract—A novel embedding-based dimensionality reduction
approach, called Structural Laplacian Eigenmaps, is proposed to
learn models representing any concept which can be defined by
a set of multivariate sequences. This relies on the expression of
the intrinsic structure of the multivariate sequences in the form
of structural constraints which are imposed on dimensionality
reduction process to generate a compact and data-driven mani-
fold in a low dimensional space. This manifold is a mathematical
representation of the intrinsic nature of the concept of interest
regardless of the stylistic variability found in its instances. In ad-
dition, this approach is extended to model jointly several related
concepts within a unified representation creating a continuous
space between concept manifolds. Since a generated manifold
encodes the unique characteristic of the concept of interest, it
can be employed for classification of unknown instances of con-
cepts. Exhaustive experimental evaluation on different datasets
confirms the superiority of the proposed methodology to other
state-of-the-art dimensionality reduction methods. Finally, the
practical value of this novel dimensionality reduction method is
demonstrated in three challenging computer vision applications,
i.e. view-dependent and view-independent action recognition as
well as human-human interaction classification.

Index Terms—computer vision, machine learning, multidimen-
sional, pattern analysis, time series analysis, video analysis.

I. INTRODUCTION

IN many perceptual tasks, such as speech, text, EEG-
signal, gesture and action recognition, modelling of a class

intrinsic characteristics is key to successful classification. In
such cases, a spoken accent, font type, handwriting style or
individual personality can be seen as stylistic variations of
the class. Here, we call ’concept’ a class which refers to a
general phenomenon derived from a set of specific instances
or occurrences recorded as multivariate sequences.

In this work, we aim at modelling any concept through a
meaningful low dimensional representation. In such context,
each observed instance is described by two independent factors
termed ’content’ and ’style’, where ’content’ is the invariant
factor related to the essence of the concept and ’style’ are vari-
ations of that concept between instances [1]. The objective is to
generate a low dimension manifold which generalises a set of
instances by representing mathematically the intrinsic nature
of the concept of interest regardless of stylistic variability. For
example, in the context of modelling a message containing a
set of instructions (e.g. ’drop to the floor, seek cover under a
piece of sturdy furniture and hold on tight’), spoken or written
words are essential to communication of those instructions, so
they are considered as content. On the other hand, accents,
font types or handwriting styles are stylistic variations of the

content, which should not change the message meaning; thus,
they could be marginalised out of the model.

Since classification in high dimensional spaces is very
challenging [2], dimensionality reduction methods have been
used to address this problem. While they have proved efficient
at reducing the complexity of many problems [3]–[8], they
generally fail to produce a coherent representation of the class
of interest when training data consist of instances varying
significantly in terms of style [9]. To overcome this issue,
we propose to model the content of a concept using the mani-
fold generated by a dimensionality reduction process where
constraints are imposed to reflect the intrinsic structure of
multivariate sequences. Furthermore, we suggest an extension
of this methodology where several concepts of similar nature
are modelled jointly within a unified representation creating a
continuous space between concept manifolds. An action that
is observed from slightly different views or related activities,
such as walking and running, are intuitive examples of similar
concepts which share common structural information.

The structure of this paper is organised as follows. After
discussion of related work in §2, we explain the fundamental
principles of the proposed methodology in §3. Subsequently,
in §4, we introduce the Structural Laplacian Eigenmaps (SLE)
algorithm and its integration into a general action recognition
framework. Afterwards in §5, first, SLE is validated qualita-
tively and quantitatively, and then performance of our action
recognition framework is reported. Finally, discussion and
conclusions are presented in §6 and §7 respectively.

II. RELATED WORK

Dimensionality reduction is formally defined as the trans-
formation or/and combination of the original multidimensional
features in order to generate more informative, descriptive and
practical data representation in a space of fewer dimensions
[10]. This process is achieved by eliminating redundancies
and irrelevant relationships present in datasets while ensuring
maximum preservation of the original information. These
techniques have proved an essential step in many machine
learning applications in domains such as computer vision [11],
computer graphics [12], robotics [13], speech recognition [14],
data visualisation [7] and pattern recognition [15].

Although Principal Component Analysis (PCA) is a well
known approach for dimensionality reduction [16], it fails
to model nonlinear structures embedded in complex data.
As a consequence, many dimensionality reduction algorithms
able to deal with nonlinearity have been proposed. They
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can be classified in two main categories: mapping-based and
embedding-based approaches.

Embedding-based approaches either estimate the local [3],
[4], [17] or global [5], [6], [18] structure of the underly-
ing manifold by preserving some geometrical relationships
between data points [3], [4], [6], [17], [18] or maintaining
pair wise similarities between data points [5]. The geometrical
constraints of Laplacian Eigenmaps (LE) [4], Locally Linear
Embedding (LLE) [3] and Isomap [6] are expressed in the
form of local neighbourhoods on a manifold. This idea is
further extended by [19] in the context of LLE for a joint
representation of multiple datasets with a common underlying
manifold. This is achieved by assembling neighbourhoods not
only within one manifold but also between different manifolds.
As a consequence, some inter manifold correspondences are
estimated which allows the embedding of all manifolds in a
single space. In turn, Local Tangent Space Alignment [17]
first explores the geometric relations between neighbouring
data points in a local tangent space and then aligns them into
a global coordinate system. A drawback of these geometrically
motivated approaches is that they do not provide any mapping
between low and high dimensional spaces which is necessary
when dealing with unseen data. Moreover, they are very
sensitive to the choice of neighbourhood size [10], [20].
Alternatively, kernel PCA [5] expresses the pair wise simi-
larities between data points in the form of a kernel function.
However, it is very sensitive to the choice of that function:
each kernel generates a specific low dimensional structure
whose performance is difficult to predict. When no a priori
knowledge is available, the whole space of kernel functions
would have to be explored in order to find the most suited to a
particular task. To address that, Maximum Variance Unfolding
[18] aims at learning kernel matrix from neighbourhood graph
restrictions using semi-definite programming. Finally, [21]
proposes the patch alignment framework and reveals that all
these approaches intrinsically consist of only two steps: the
different patch optimisation stage and an almost identical
whole alignment stage.

On the other hand, mapping-based approaches, such as
Gaussian Process Latent Variable Model (GPLVM) [7] and
Generative Topographic Mapping (GTM) [22], use proba-
bilistic nonlinear functions to map the embedded space to
the data space. As a result, these methods approximate the
underlying distribution of the observed space which, in turn,
allows generalising the learned space to unseen data. However,
their main limitation is their computational complexity which
prevents their usage when dealing with large datasets [7]–[9].
Furthermore, since the GPLVM objective function is under-
constrained in the general case [55], it is sensitive to local
minima if the initialisation of the model is poor [8].

In addition to the intrinsic limitations of these two classes
of dimensionality reduction methods, and despite the con-
siderable amount of work which has been devoted to their
development [3]–[7], [10], [19], [22], the specific nature of
data is rarely taken into consideration. In particular, the
sequential structure of multivariate sequence data should be
preserved in their low dimensional representations.

The most well known representative of embedding-based

approaches for modelling sequential data structure is a spatio-
temporal extention of Isomap which alters empirically the
original distance weights in the graph of local neighbours
to emphasise similarity between temporal related points [23].
Although this method demonstrates the value of integrating
sequential constraints, it is sensitive to the empirical selection
of parameters. Some mapping-based approaches also integrate
temporal information. Back-Constrained Gaussian Process La-
tent Variable Model (BC-GPLVM) includes temporal coher-
ence constraints to ensure the smoothness of the mapping
between spaces [24]. In addition, the GTM algorithm was
extended to capture temporal dynamics of sequential data by
incorporating this information as an emission density in a
Hidden Markov model [25]. In contrast, Gaussian Process
Dynamical Model (GPDM) and its variants integrate time
information by associating nonlinear autoregressive dynamic
model to the embedded space [26]. The addition of temporal
information allows these approaches to produce smoother low
dimensional representations, i.e. spaces with trajectories of
points without gaps and jumps within a sequence. Nevertheless
these methods are even more computationally expensive than
their respective standard formulations [9], [24]–[26].

Although the issue of style has so far been of limited
interested in the field of dimensionality reduction, a few
attempts have been made to model stylistic variability of
a concept in a low dimensional space [8], [11], [27]–[29].
However, in classification applications, content is essential to
characterise the concept, whereas style should be marginalised
out since it is an irrelevant and unhelpful factor. To date, no
approach has attempted to tackle the classification problem
by suppressing style in the low dimensional representation of
the concept of interest. Contrary to the few methods tailored
for dimensionality reduction of multivariate sequences [23]–
[26], the presented approach takes into account not only the
sequential structure of data but also correspondences between
different instances of the concept. Consequently, a common
underlying manifold can be learnt to represent the unique con-
tent of any concept, that is represented as a set of multivariate
sequences. Finally, we extend the applicability of our dimen-
sion reduction method by proposing a unified representation
between concept manifolds so that similar concepts, i.e. which
share common structural information, can be modelled jointly
within a continuous space.

III. PRINCIPLE

In addition to low computational cost, spectral dimension-
ality reduction methods offer a powerful framework based on
graph theory which is able to describe constraints between
data points in the form of neighbourhood graphs [3], [4],
[6]. By taking advantage of that framework, we propose
to encode the structure of the concept using two types of
constraints expressed by novel structural neighbourhoods for
each data point in the multivariate sequences. In contrast with
our previous work [9], the strong theoretical framework used
to define our new methodology allows its generalisation to any
sequentially ordered data. Note that we deal with the lack of
mapping between low and high spaces by learning advanced
mapping functions separately.
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The first constraint which is introduced in the dimension-
ality reduction method focuses on preserving the sequential
structure of a multivariate sequence in the low dimensional
space. This constraint is expressed by a sequential neighbour-
hood, where data points are connected according to the order
in the sequence. The second constraint aims at minimising
stylistic variations displayed by different sequences or even
within a sequence, if it contains repetitions. This is achieved
by finding correspondences between and within sections of
the multivariate sequences that exhibit high similarity. Then,
within these regions, each data point is associated to corre-
sponding points within the same sequence (intra) or in other
sequences (inter). In this work, we will refer to these points
expressing the second constraint as intra and inter-sequence
neighbours respectively.

These two sets of constraints associated to each data point
are then assembled into adjacent structural graphs to encapsu-
late effectively all sequential as well as mutual intra and inter
dependencies of instances of multivariate sequences defining
a single concept. Those graphs are then processed using an
extended spectral dimensionality reduction scheme to generate
a single low dimensional manifold which should model the
concept of interest independently from style.

Since structural relationships may also exist between differ-
ent concepts of similar nature, the inter-sequence neighbours
can also be identified between such concepts. As a result,
when the manifold for each concept has been generated
independently, such correspondences can be employed to align
these concept spaces into a single coherent representation of a
meta-concept. Such meta-concept space, when associated with
advanced mapping functions, allows extrapolating a model to
instances of unknown concepts.

IV. PROPOSED METHODOLOGY

This paper presents Structural Laplacian Eigenmaps (SLE)
which is a novel and efficient unsupervised nonlinear method
for dimensionality reduction which learns data-driven mani-
folds designed for any concept which can be represented by
a set of multivariate sequences. In addition, an extension of
this schema is introduced to model jointly similar concepts in
a continuous manner.

A concept is mathematically modelled by a set of P
multivariate sequences Y = {yζ : 1 ≤ ζ ≤ P, ζ ∈ N, P ∈ N}
distributed on a manifold in some high dimensional space of
dimension D, where a sequence is defined as yζ = {yζ [t] : 1 ≤
t ≤ Tζ , t ∈ N, Tζ ∈ N, yζ [t] ∈ RD}. Here t denotes a discrete
sequential index, e.g. time, while ζ corresponds to different
instances of the concept with various lengths Tζ . In turn, N
is the total number of samples in the dataset N =

∑ζ
r=1 Tr.

Given a set Y of such data sequences, SLE learns their low
dimensional representation X = {xζ : 1 ≤ ζ ≤ P} of dimen-
sion d, where xζ = {xζ [t] : 1 ≤ t ≤ Tζ , xζ [t] ∈ Rd, d� D}.
This is achieved by modelling the intrinsic structure of the
data sequence manifold instead of its local geometry as is the
case with the standard Laplacian Eigenmaps.

Ideally, the reduced dimensionality d should correspond to
the intrinsic dimensionality of the data so that the reduced

space represents the observed properties of the data without in-
formation loss. The intrinsic dimensionality can be understood
as the minimum number of independent variables needed to
explain satisfactory a concept of interest [10]. Formally, from
a geometrical point of view, a low dimensional representation
of a concept is expected to be d-dimensional if the dataset
elements lie entirely within a d-dimensional subspace of RD
[30]. The determination of d has been an active field of
research where many approaches have been proposed (see
survey [30]), and is beyond the scope of this paper.

The proposed methodology first constructs local patches
from neighbourhoods around each data point based on struc-
tural sequences (§IV-A). Then, these individual local con-
straints are assembled into two sparse graphs to represent
complementary relationships between all data points in the
sequences (§IV-B). The first graph expresses the constraint
of sequential consistency within each data sequence, whereas
the second graph encodes mutual intra and inter region de-
pendencies between sequences. These local constraints are
appropriately modelled by taking advantage of a unique
property of the standard LE framework: the preservation of
relative distances between neighbourhood points in the low
dimensional space. SLE extends this framework by introducing
structural graphs which impose proximity relations between
multivariate sequences. As a consequence, these graphs, when
employed simultaneously to constrain the extended dimen-
sionality reduction process (§IV-C), allow representing the
intrinsic nature of the concept regardless of style. The whole
pipeline is depicted in Fig. 1. Note that in the context of
the patch alignment framework [21], SLE proposes a new
patch optimisation stage; whereas the global alignment step
is consistent with other embedded based approaches.

Fig. 1. Framework of Structural Laplacian Eigenmaps.

A. Construction of Structural Neighbourhoods

The content of a concept is extracted implicitly during the
dimensionality reduction process which relies on preserving
its structure using a set of constraints. They have the form of
two sets of neighbourhoods for each data point. They express
relationships within as well as between multivariate sequences.
Let’s define any point in dataset Y as ui = yζ [t] where ui ∈
RD and:

i =

{
t for ζ = 1∑ζ−1
r=1 Tr + t for ζ > 1

(1)

Then, the sets are defined as follows:
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- Sequential neighbours (S): assuming a first-order Markov
dependency between consecutive points, the sequential neigh-
bours, Si, of yζ [t] are the previous and subsequent closest
point in the sequential order of Markovian process associated
with the concept (green dots in Fig. 2):

Si = {yζ [t− 1], yζ [t+ 1]} (2)

- Intra and inter-sequence neighbours (R): let’s associate to
each point 2s sequential neighbours which define a sequence
fragment Fi. The intra and inter-sequence neighbours, Ri, of
yζ [t] are the centres of the qi sequence fragments, Fi,k, which
are similar to Fi according to some mathematical criterion
(magenta dots in Fig. 2):

Ri = {Fi,1(C), ..., Fi,qi(C)} (3)

where Fi,k(C) returns the centre point of Fi,k, in the instance
ξ of the concept. The intra neighbours are extracted from
different fragments within the current sequence ξ = ζ, whereas
inter neighbours correspond to centres of fragments from
different sequences ξ 6= ζ.

The size of the intra and inter-sequence neighbourhood
qi corresponds to the number of times a local fragment
is repeated, i.e. how many times the same subset of the
content is available within the set of instances describing
the concept of interest. The optimal intra and inter-sequence
neighbourhood size as well as a selection of these neighbours
are automatically determined. First, each data point, yζ [t], is
associated to 2s sequential points to create the local fragment
Fi:

Fi = {yζ [t−s], ..., yζ [t−1], yζ [t], yζ [t+1], ..., yζ [t+s]} (4)

In order to calculate similarity between local fragments Fi,
a similarity function f , e.g. dynamic time warping (DTW)
[31], is selected. Comparisons are then performed against all

Fig. 2. Sequential (green dots) and intra and inter-sequence (magenta dots)
neighbours of a given data point, yζ [t] (grey dot), where s = 3 (grey and
blue sequences).

fragments created by sliding a warping window through the
entire training set (j is defined according to eq. (1)):

M = f(Fi, Fj) (5)

Afterwards, the obtained similarity matrix M is diagonally
windowed by applying a moving average filter on distances
between fragments using a history window of size 2s:

m′i,j =
1

2s

2s−1∑
b=0

mi−b,j−b (6)

Finally, intra and inter-sequence neighbours Ri are identified
by extracting the centres of similar frag-ments, Fi,ξ. These
centres correspond to local minima in each row of neigh-
bourhood similarity matrix M ′ = {m′i,j}. More formally,
the similarity is defined here as b, typically 1.5, standard
deviations σi from the mean µi in each row i:

Ri = {Fi,j(C) : m′i,j < µi − bσi} (7)

Although, the process of sliding the warping window is time-
consuming for large training datasets, it can be significantly
reduced by using constraints during DTW computation such
as Sakoe-Chiba band [32].

B. Assembling of Structural Graphs

The obtained structural neighbour relations are used for
assembling two structural graphs G = {S,R}, where any
two vertices in these graphs are connected only when a
neighbourhood relation exists between these points. Weights
W are assigned to the edges of each graph separately using
the standard LE formulation:

W i,j
G =

{
exp(−‖ui − uj‖2/α) if ui,uj are neighbours
0 otherwise

(8)
where α is a global coefficient, i.e. width of Gaussian kernel.
In contrast to the standard LE graph obtained by the naive
K-nearest neighbours procedure [1], SLE’s graphs are derived
from structural relationships. The conceptual difference be-
tween them is illustrated in Sup. 1. Neighbourhood connec-
tions defined in the Laplacian graphs impose point closeness in
the embedded space. Consequently, the sequential neighbours
allow modelling the sequential nature of successive data points
into the resulting embedding. In turn, intra and inter-sequence
neighbourhoods discard style variability. This is achieved by
aligning the sequences in the embedded space, so that the
intrinsic pattern of the concept is implicitly extracted.

C. Manifold Generation

Let’s define any low dimensional point in dataset X as vi =
xζ [t] where vi ∈ Rd and i,j are given by eq. (1). Following
the standard LE formulation, we introduce an extended cost
function to combine information from both structural graphs:

ε =
1

2

∑
i,j

‖vi − vj‖2W i,j
S +

1

2

∑
i,j

‖vi − vj‖2W i,j
R

= XTLSX +XTLRX (9)
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where LG = ZG − WG is the Laplacian matrix derived
from the corresponding graph G = {S,R}, while ZG =
diag(Z1,1

G , Z2,2
G , ..., ZN,NG ) is a diagonal matrix whose entries

are: Zi,iG =
∑N
j=1W

i,j
G .

The objective of the dimensionality reduction process is to
minimise eq. (9) with respect to the embedded coordinates X
subject to constraints:

argminX tr(XTLSX +XTLRX) (10)
subject to XTZSX +XTZRX = I (11)

This formulation doesn’t constrain manifold to be derived from
closed topology, which allows modelling cyclic, quasi cyclic
and noncyclic multivariate sequences. Since LG is the positive
semi-definite Hermitian matrix, the minimum of the objective
function can be found analytically by applying Lagrange
multipliers to eq. (10) subject to the constraint expressed by
eq. (11):

(LS + LR)X = λ(ZS + ZR)X (12)

where the corresponding eigenvectors xi (i = 1..D) ordered
according to their eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λD
satisfy:

(LS + LR)x1 = λ1(ZS + ZR)x1

(LS + LR)x2 = λ2(ZS + ZR)x2

...

(LS + LR)xD = λD(ZS + ZR)xD (13)

The final embedded space X is spanned by the eigenvectors
xi which correspond to the d smallest nonzero eigenvalues λi
obtained by the solution of the sparse generalised eigenvalue
problem (eq. (12)) [33] according to the generalisation of the
Rayleigh-Ritz theorem [34]. Note the bottom d+ 1 eigenvec-
tors of LS +LR can be determined without performing a full
matrix decomposition [35]. Moreover, the combined matrix is
extremely sparse, which results in substantial computational
savings. As a consequence, the complexity of the optimisation
process is O(pN2), where N denotes the number of points
in a dataset and p is the ratio of nonzero elements in a
sparse matrix LS + LR to the total number of elements N .
Since the analytical optimisation process of SLE has the same
complexity as the standard LE, the proposed methodology is
computationally efficient especially in comparison to mapping
based approaches with complexity of O(I ∗ N3), where I
denotes the number of iterations in an optimisation process.

According to the patch alignment framework [21], the
proposed objective function eq. (10) can be decomposed over
m = 1..N patches within the patch optimisation step:

argminX

N∑
m=1

tr(XT
mLS,mXm +XT

mLR,mXm) (14)

, whereas the second stage, i.e. whole alignment, follows the
standard formulation:

argminXtr(X
TLX) (15)

where Xm = XSm, the Sm denotes the selection matrix [21],
and L =

∑N
m=1 SmLmS

T
m allows forming a global coordinate

system using the alignment trick [17]. Finally, the Lm for each
patch is defined by:

Lm =

[ ∑qm+2
j=1 (W

m,mj

S +W
m,mj

R ) −
−−→
Wm

T

−−→
Wm diag(

−−→
Wm)

]
(16)

so that
−−→
Wm = [W

m,mj

S +W
m,mj

R ]qm+2
j=1 is a vector weighted

by 2 sequential and qm intra and inter sequence neighbours in
the local patch around sequence point m according to eq. (8).

D. Joint modelling of similar concepts

When several concepts share a similar content, the proposed
schema can be extended to model jointly these concepts in a
unified representation. Such model allows representing a meta-
concept by approximating the continuity of the content space
in a meaningful manner and consequently provides generali-
sation abilities to unknown instances of related concepts.

This is achieved by first reducing independently dimen-
sionality of each concept space using SLE to d-dimensions.
Then correspondences between concepts are estimated to align
and join all individual concept spaces into a single coherent
representation of meta-concept. Finally, the continuity of the
obtained model is approximated by learning mapping func-
tions between low and high dimensional spaces, for instance
using a variant of the RBF network [11], [36], [37].

If correspondences between multivariate sequences are un-
known, e.g. in walking and running activities, they can be
inferred using our DTW-based procedure which estimates
inter-sequence neighbours. Based on estimated relations, for
any given manifold point, a single correspondence neighbour
is chosen on each of other concept manifolds. Alternatively
the required correspondences between similar concepts may
be known apriori. For example in computer vision, when a
specific action, i.e. concept, is observed from slightly different
camera views, there is a unique correspondence between
postures in each view-dependent manifold. The obtained cor-
respondences allows aligning spaces in a single representation
using any transformation which preserves the internal structure
of the manifold, e.g. Procrustes analysis [38].

E. Integration into an Activity Recognition Framework

In order to demonstrate a practical application of the pro-
posed methodology, it is integrated into an activity recognition
framework able to handle challenging scenarios where data are
captured from uncalibrated cameras. In the context of these
scenarios, any specific action recorded from a given camera
angle can be interpreted as a concept to model. In turn, an
action observed from several cameras corresponds to a view-
independent meta-concept.

A classic action recognition framework consist of three
steps: extraction of features, which are often spatio-temporal
[39]–[44], generation of action models and classification of
unseen action instances. A variety of approaches has been
proposed to produce action models. They include Hidden
Markov Models [45], [46], Conditional Random Fields [47],
Action Nets [48],Random Forest [42], Bag of Words [40],
[41], [41], [49]–[52] and low dimensional models [53]. Finally,
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a classifier is trained on these models to perform the final
annotation of a new action. The most popular approaches
are nearest neighbour classification [39], [43], [50], [52]–
[54], probabilistic classification [45]–[48] or Support Vector
Machine [40], [44], [49], [51].

Since different instances of a given action reside only in a
subspace of the entire high dimensional feature space, we de-
velop the idea of an action manifold [55], which is an intuitive
and compact descriptor of human body motion embedded in a
low dimensional space. In the context of this work, the action
manifold corresponds to the concept manifold. Here, style
corresponds to morphological and biomechanical differences
between people induced by body size, body shape, gender,
mood, etc. as well as motion execution variability or speed
[56]. Following [57], [58], the action content is represented as
a 1-dimensional manifold embedded in 2-dimensional space.
As a low level image feature, the space-time cube is adopted
[43], whereas classification is performed according the nearest
neighbour procedure.

1) Action Recognition Framework: The proposed action
recognition system is composed of two pipelines performing
training (Fig. 3a) and classification (Fig. 3b). On the training
side (Fig. 3a), binary silhouettes are extracted from the im-
age sequences and used to produce a spatio-temporal shape
descriptor for each motion instance. Then, for each action of
interest, the dimensionality of the motion space is reduced
using SLE to create an action manifold (§IV-E3). Subse-
quently, a mapping function is learned in order to provide a
bidirectional projection mechanism between the original space
and the action manifold. Note that SLE is used to generate an
action manifold for each concept defined as an action observed
from a given angle. The production of a single model for the
meta-concept of an action observed from any angle can be
achieved by integrating a set of manifolds modelling actions
seen from slightly different angles. This new model, which is
called view-independent action manifold, can then be used to
perform view-independent action recognition.

(a)

(b)

Fig. 3. Action recognition framework: learning process (a) and classification
process of a new video (b).

On the classification side (Fig. 3b), the shape descriptor
is generated from the video of interest. It is then projected
using the learned mapping function into each action manifold.
Finally, the process of video labeling is performed by nearest
neighbour classification.

2) Neighbourhood Selection Procedure: First, temporally
segmented action videos captured from a particular angle are
processed to extract a sequence of binary silhouettes which
are then represented as local space-time saliency features [43].
This representation assigns highest gradient values within fast
moving limbs which are usually much more informative for
identifying actions (Sup. 11 and Sup. 10, 1st row). Since the
shape descriptor is derived from a unique region of interest, or
action bounding box, it includes several interacting subjects in
the case of actions involving interactions while it only contains
a single actor when the action is performed by an individual.

Successful dimensionality reduction using SLE depends
on the appropriate identification of intra and inter-sequence
neighbours for each frame. This is achieved automatically by
adopting the similarity metric proposed by [43] and extending
the local space-time saliency shape descriptor with 6 local
space-time orientation features, which correspond to temporal
(blue), horizontal (red), and vertical (green) directions of local
’plates’ (Sup. 10, 2nd row) and ’sticks’ (Sup. 10, 3rd row)
within a human shape. All these features are then combined
to form a space-time cube for each frame [43] by sliding a
warping window in time of size s (see §IV-A). This cube is
a compact and temporally constrained representation of the
sequence fragment which encapsulates local shape and orien-
tations features within a given window. Since, each sequence
fragment is now expressed by a single feature vector; the
similarity between them can be computed effectively using the
standard Euclidean norm without the need of computationally
expensive temporal alignment of points sequences. This proce-
dure computes a neighbourhood similarity matrix M (Eq. (5))
of Euclidean distances between all space-times cubes among
all sequences. An example of neighbourhood similarity matrix
produced by this process for SLE is depicted in Sup. 11.

3) View-independent Action Recognition : An action man-
ifold represents the temporal structure of the action observed
from a given view. On the other hand, the same action can be
observed from slightly different views, for example, in terms
of camera azimuth angle. We propose to take advantage of the
sequential structure along azimuth angle by modelling jointly
the action manifolds in a meaningful representation associated
with the meta-concept of view-independent action. Here, we
demonstrate that the extension for joint modelling of similar
concepts which was proposed in §IV-D can be successfully
implemented to achieve view-independent action recognition.
The learning procedure of a view-independent action manifold
is summarised in Fig. 4: it is based on the framework we
presented in [55].

First, SLE extracts the action manifold, i.e. the style invari-
ant content of the action of interest, for each view. As a result,
a set of style-invariant but view-dependent 1-dimensional ac-
tion manifolds embedded in 2-dimensional space is obtained.
Secondly, these models are combined to produce a compact
and view-independent action manifold model of the consid-
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Fig. 4. Description of the view-independent action recognition framework for
the ’point’ action.

ered action. The 1-dimensional action manifold represents the
structure of an action along the time dimension captured from
a given view. Here, we assume that similar concepts are evenly
sampled every Z degrees of azimuth view angle in the range
{i : i ∈ [0◦, 360◦), i = i + Z} and point correspondence
between them have been established. In this context, every
view-dependent action manifold Mi has two neighbouring
manifolds Mi−Z and Mi+Z . Connections of corresponding
points create closed 1-dimensional manifolds (topologically
equivalent to circles) which are the view-independent embed-
ded spaces of postures present in the action. Therefore, we
define the unified representation of an action as the combined
space of the two sets of continuous 1-dimensional manifolds,
i.e. content and view, which are placed orthogonally to each
other and embedded nonlinearly in a 3-dimensional space.
In order to extrapolate that space to unseen instances of
actions, a mapping function is required. We propose to achieve
this using a geometrically based process. This requires that
view-dependent representations are first aligned with respect
to a reference manifold. Here Procrustes analysis [38] is
employed to preserve the internal structure of each manifold.
Then, all embedded representations are assembled into a
three-dimensional space to encode the sequential structure
along the view dimension. The outcome of this procedure
reveals a torus-like structure which encapsulates both a unique
content and view variation (Sup. 12). We call this structure a

view-independent action manifold. This result is in line with
previous work [11], where the usage of a torus was justified as
an ideal representation for modelling both the viewpoint and
the body configuration of different actions. However, while in
that work the topological correspondence between data points
and an ideal torus was artificially enforced, in our work this
torus-like representation is data-driven and reflects the intrinsic
content of the view-dependent data. Therefore, in our approach
any type of motion, even non-periodic ones can be handled
using a single framework (Sup. 12). Finally, the continuity
of the descriptor is approximated by learning a generative
decomposable model [36] which has previously been used
to interpolate style and view factors of unknown instances
of actions. As a consequence, a flexible mapping function is
derived which enables projecting between the low dimensional
view-independent action space and high dimensional observed
space.

V. SLE EXPERIMENTAL EVALUATION

The proposed methodology is validated qualitatively and
quantitatively in a range of perception tasks to examine its
properties and demonstrate its key characteristics. In particular,
a comparative analysis of performance is performed between
the proposed SLE and current state-of-the-art approaches for
dimensionality reduction.

First, we evaluate the proposed approach qualitatively using
datasets for which the underlying structure is known so that
the quality of the embedded space can be judged visually
(§V-B). Secondly, a quantitative comparison of SLE against
state-of-the-art approaches is presented in a 3D pose recovery
application (§V-C). Finally, we validate our extension for joint
modelling of similar concepts by representing walking and
running activities in a coherent continuous space (§V-D).

Unlike SLE, all other embedding-based methods require
manual parameter tuning, which is very sensitive to the dataset
of interest. Therefore, in such cases, extensive testing was
conducted to determine the optimal settings for each exper-
iment independently. In addition, the number of nontrivial
neighbours required for ST-Isomap [23] was calculated using
the SLE neighbourhood estimation procedure from §IV-A.
Regarding mapping-based approaches, we used the default
parameters provided with the Matlab implementations of BC-
GPLVM [24] and GPDM [26].

If it is not stated otherwise, the DTW distance is used
in SLE to measure similarity of sequence fragments during
determination of the intra and inter-sequence neighbours. In
turn, the length of the sequence fragment s was set empirically
to a value 10 in all our experiments (see eq. (4)). Due to the
transitivity of neighbourhood connections, the choice of this
parameter is not critical as shown in Sup. 2. Finally, standard
LE coefficient α was set to 1 (eq. (8)).

A. Datasets

The proposed methodology is evaluated using three different
datasets: one is composed of images, whereas the other two
contain 3D motion capture (MoCap) data.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART B, VOL. X, NO. X, NOVEMBER 2012 8

Using the Columbia Object Image Library [59], we se-
lected 6 sets of colour images which show similar objects
in terms of global shape, i.e. rectangular cuboid, but dis-
playing significantly different appearance: 27.car, 31.box 1,
39.container, 46.cigarette packet, 55.jar, 79.box 2 (see Sup.
3). In the dataset, each object was placed on a turntable in
front of a uniform black background. Then, 72 views, i.e.
every 5 degrees, were captured by a fixed camera. Pictures
were normalised to a size of 128x128 pixels. In such context,
the angular position of an object with respect to the camera
view represents the concept to model, whereas the type of
object corresponds to its style. After conversion to grey level
scale, all images represent points in a 16384-dimensional space
within multivariate sequences corresponding to the sequential
change of the object appearance when rotated on the turntable.
Although the appearance of objects differs significantly, the
global shape of these objects is similar when represented as 2D
contours. Such contours change smoothly when the turntable
is rotated. As a result, the image sequence captures the visual
deformation of the global 3D object geometry across different
views. Contours are extracted by thresholding binary masks
from images and then tracing their boundaries. Subsequently
they are normalised so that they display the same height to
width ratio.

The second dataset is a subset ot the HumanEva dataset [60],
i.e. MoCap data of walking and jogging actions performed
by three different subjects. In turn, the third dataset, called
”walking2running” [27], consists of walking, walking fast and
jogging sequences and relevant transitions performed on a
treadmill by one subject. In both MoCap datasets, the 13
joints skeleton-based MoCap data are first normalised and
then parameterised by a quaternion representation [11] to
form temporal sequences of 52-dimensional feature vectors.
The walking, walking fast and jogging actions were chosen
as concepts, since their intrinsic dimensionality as well as
their underlying manifold structure is well known [12], [61],
[62]. These actions are cyclic, since the same intrinsic joint
configuration of the human body reoccurs every two steps.
Intuitively, any two steps correspond to a continuous curve
in a human motion space, since there is only one degree of
freedom, i.e. the innate state/configuration of the motion over
time.

B. Qualitative Evaluation
Qualitative evaluation is performed in two experiments

using the image and MoCap datasets, where style, i.e. object
nature and person style should be discarded, respectively, to
model view angle and innate pose configuration, respectively.
In both cases, their intrinsic dimension is 1 and the hidden
structure of their content is embedded into a 2-dimensional
space to take into account their cyclic nature (d = 2). Whereas
the low dimensional representation of human motion as a 2D
oval shape has already been shown in many studies [12], [37],
[61], [62], object orientation is the only dimension related to
the content of the image dataset. Examples of neighbourhood
similarity matrices generated during dimensionality reduction
using SLE are depicted in Fig. 5 for the human MoCap data
and in Sup. 3 for image dataset.

Fig. 5. Neighbourhood similarity matrix created by the SLE using two
subjects. Each local minima (red) corresponds to the most similar intra and
inter-sequence neighbours in relation to the reference object (green).

Using various nonlinear dimensionality reduction methods,
i.e. LE, Isomap, BC-GPLVM, GPDM, ST-Isomap and SLE, we
generated the 1-dimensional manifolds of the 6 image objects
(Sup. 5) and two human actions (walking in Fig. 6 and jogging
in Sup. 4). In addition, Sup. 6 shows projections of image
views on the produced manifolds.

The geometrically motivated LE and Isomap approaches as
well as the probabilistic BC-GPLVM and GPDM fail to model
the expected single ellipse structure of the content. The rep-
resentations of all these embeddings appear to be dominated
by stylistic variations (Fig. 6a,6b,6c,6e, Sup. 4a,4b,4c,4e and
5a,5b,5c,5e). In all cases, these methods fail to generalise
between the different styles, either 2 subjects or 6 objects,
which leads to the generation of manifolds displaying a set of
disjointed circular shapes. Since BC-GPLVM and GPDM use
only a constraint of temporal continuity, these results suggest
it is insufficient to model the content of action regardless
of style. In contrast, the incorporation of sequence-based
constraints using either ST-Isomap or SLE, allows, at least,
some integrations of the different styles in a single space (Fig.
6d,6f, Sup. 4d,4f,5d,5f). However, not only the spaces obtained
by ST-Isomap are distorted, but, in the case of the image
dataset, although some global pattern of concentric ellipses
emerges (Sup. 5d), this is not satisfied by the sequences of
2 objects, i.e. 27.car and 39.container (black and red curves
respectively) (Sup. 5d, 6c).

In contrast, SLE produces an single ellipse-like representa-
tion which is in line with the expected structure of the dataset
content. Fig. 7 clearly shows that all the image objects are
arranged according to the view point in this representation,
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Embedded spaces for walking (2 subjects) using a) Isomap, b) BC-
GPLVM, c) LE, d) ST-Isomap, e) GPDM and f) SLE.

Fig. 7. The 1-dimensional joint view manifold embedded in the 2-dimensional
space obtained by SLE with visualisation of corresponding objects.

which is invariant to object appearance. Similarly Sup. 7
and corresponding Sup. 8 confirm the subject invariant rep-
resentation in the case of human motion. These experiments
demonstrate that SLE is able to embed the common intrinsic
dimension of non linear data by discarding style variability
between different sequences.

C. Quantitative Evaluation

A comparative analysis of quantitative performance between
the proposed SLE and other state-of-the-art approaches is
performed using a 3D pose refinement framework [9] which
takes advantage of the embedded spaces of the human motions
generated in the previous section.

This consists of two modules: training and pose refinement.
During the training stage, the space of each human motion
is reduced to its intrinsic dimensionality (d = 2). Following
[28], a Radial Basis Function network is learned to provide
a bidirectional projecting mechanism between the high and
low dimensional spaces. The second module of the framework
deals with the actual problem of 3D pose refinement. Given a
sequence of (inaccurate) 3D pose estimates, the framework
projects each 3D skeleton into the embedded space using
the corresponding mapping function. Then, this projection is
associated to its nearest low dimensional training neighbour
according to the Euclidean distance. Finally, the selected
neighbour is projected back to the human motion space as
the refined 3D pose estimate.

In this experiment, two actions are considered, i.e. walking
and jogging. Although test pose estimates could be obtained
from any 3D pose recovery framework, in order to provide
a comprehensive evaluation platform for quantitative com-
parison, a large testing dataset of 6000 pose estimates was
simulated by introducing Gaussian noise to ground truth poses
with an average error per joint of 80mm, i.e. the average
error of recently proposed approaches [60], [63]. To mea-
sure performances, experiments are conducted using cross-
validation taking either one or two subjects for training leaving
respectively two or one subjects for testing and averaging over
5 test sequences. The visual representations of the generated
low dimensional spaces are provided in the previous section to
highlight the content extraction abilities of the methods under
study.

The qualitative evaluation of human motion from the previ-
ous section is supported here by a quantitative comparison of
the obtained accuracy (Fig. 8 and Sup. 9). First, performance
analysis confirms the generalisation abilities of the methods
integrating temporal constraints since data from a second
subject improves their accuracy. Conversely, the inability of
Isomap and LE to generate a coherent manifold from data
comprising several individuals leads to significant degrada-
tion of pose refinement performance. Among the temporal
approaches, BC-GPLVM and SLE benefit the most from
additional training samples (accuracy +12%). On the other
hand, GPDM’s dynamic model seems to be able to optimise
most of its parameters from a single subject. Note that the

Fig. 8. Average refinement root mean square error for walking sequences
using either one (blue) or two (green) subjects for training.

Fig. 9. Training times based on either 1 (blue) or 2-subject (green) walking
sequences (parameter estimation is manual for all embedding-based methods).
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presented quantitative results are influenced by the quality of
both the embedded space and the mapping function between
spaces. For that reason, although ST-Isomap produces more
convincing visual representation than BC-GPLVM (Fig. 6 and
Sup. 4), it performs worse because of less advanced mapping,
i.e. RBF-based mapping. We can therefore conclude that SLE
and BC-GPLVM are the most successful approaches. SLEs
superiority was predictable theoretically. First, since structural
relationships between sequences, e.g. temporality, are local
properties of data, the local constraints of SLE allows encoding
this crucial information and thus discovering more accurate
data driven models than ST-Isomap which relies on global
constraints. Second, the lower complexity of the optimisation
process of SLE should lead to better convergence in com-
parison to the Gaussian based approaches. As consequence,
SLE not only displays the best accuracy and produces more
meaningful embedded spaces (Fig. 6 and Sup. 4), but it is also
significantly faster by an order of magnitude, even when the
cost of the neighbourhood selection procedure is added (Fig.
9, last column). This is very important because this shows that,
unlike BC-GPLVM, SLE has the ability to learn models from
much larger training sets which should conduce to even better
results.

D. Validation of joint modelling of similar concepts

Walking and running are human bipedal motions which are
based on cyclical movements of the hind limbs [64]. One
complete cycle is called a stride and consists of two phases.
During the stance phase, each limb spends a part of the stride
in contact with the ground. Then it is followed by the swing
phase where the foot leaves the ground and is brought forward
for the next stance phase. The right and left legs alter between
phases, so when the right leg is in the middle of its stance
phase, the left leg is in the middle of its swing phase. Thus
walking and running can be considered as similar concepts
with a common content structure which differs, in particular,
in the relative duration of the stance and swing phases of the
stride. In walking, each foot spends more than half of the
stride in stance, while in running it is shorter thus creating
overlapping swing phases with both feet off the ground. Fig. 10
presents a representation of those activities in a single coherent
space. Using the ”walking2running” dataset, this space was
obtained by reducing dimensionality of each action indepen-
dently using SLE and then combining both concept spaces in a
unified model of the meta-concept. Correspondences between
concepts were determined using our DTW-based procedure
which estimates intra and inter-sequence neighbours. For each
point, the most similar neighbour in the other concept was
chosen. These correspondences allowed aligning spaces in a
single representation using Procrustes analysis [38]. Finally,
the continuity of this meta-concept space was approximated
by learning RBF mapping functions [37].

Such meta-concept space encodes not only walking and
running actions, which form the boundaries of the space, but
also intermediate actions between these concepts, e.g. fast
walking. In order to demonstrate that the interpolation between
the two spaces is meaningful, we conducted an experiment

where the sequence defining a fast walking model generated
from the continuous meta-concept space was projected in a
motion capture space containing examples of walking, running
and fast walking sequences.

First, we extracted a model expected to represent fast walk-
ing by selecting a sequence of points located at mid distance
between the walking and running manifolds. (Fig. 10, green
circle). Then, the low dimensional models of walking, walking
fast and running were projected to the high dimensional space.
Subsequently, we looked for the best fit for the generated
sequences of 3D skeletons within a dataset of actual motion
capture data of an individual performing those three actions.
This was achieved using DTW by comparing the sequences
of interest with sequence fragments generated by sliding a
warping window through the dataset. Finally, the average of
mean absolute angle error was computed between the 3D
skeletons of each generated sequence and their best match
in the dataset.

Table I shows that, as expected, each generated sequence
matches the most a MoCap sequence with the same label,
even the fast walking one which was created from manifold
interpolation. In addition, the generated walking and running
sequences are closer to fast walking data than running, re-
spectively walking, data. This experiment confirms that the
generated fast walking model is a useful approximation, which
illustrates the value of meta concept spaces. Note that the
lower accuracy displayed here by the fast walking model can
be explained by the fact it does not rely on actual training
data, but interpolation.

TABLE I
AVERAGE OF MEAN ABSOLUTE ANGLE ERROR OF PROJECTED ACTION

MANIFOLDS WITH ACTUAL MOCAP DATA

Low dimensional
Walking Running Fast walking

representation
Walking 2.1◦ 7.4◦ 2.6◦

Running 7.4◦ 3.7◦ 3.9◦

Fast walking 7.2◦ 5.9◦ 5.5◦

Fig. 10. Joint representation of learned walking (red) and running actions
(blue) together with fast walking action approximated by an interpolated
model (green).
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VI. APPLICATION TO ACTION RECOGNITION

Evaluation of classification performance is achieved using
the standard approach used in the action recognition commu-
nity [40], [41], [44], [45], [48], [50], [51], [54], [65], [66].
As a consequence, recognition rates are computed by the
leave-one-actor-out strategy, i.e. at each run, one subject is
selected for testing, whereas all remaining actors are used for
models learning. Then, all actions performed for that actor
are evaluated independently and a final error is estimated by
the average error rate over all experiments. Two scenarios are
evaluated, i.e. view-dependent and view-independent action
recognition using action-based and subject-based bounding
boxes respectively.

A. Datasets

View-dependent action recognition is performed on the
Weizmann [43] and UT-Interaction [67] datasets. The first
dataset consists of 9 different subjects repeating individually
several times 10 actions such as wave, run, jump, bend, in
an outdoor environment with a static background. The second
dataset is currently the most complete in terms of available
training material and actions involving interactions. All videos
are captured from a single view and show interactions between
two characters seen sideways. It is composed of two sets
of 10 videos including 6 different actions such as kicking,
shaking hands and hugging. These two sets (D1 & D2) differ
in terms of character’s resolution (260 against 220 pixels) and
background complexity (D1’s is more uniform).

View-independent action recognition is evaluated on the
publicly available multi-view IXMAS dataset [45]. It is com-
prised of 13 actions, such as sitting, waving, pointing and
checking watch, performed by 12 different actors. Each ac-
tivity instance was recorded simultaneously by 5 calibrated
cameras, and a reconstructed 3D visual hull is provided. In
line with other experiments using IXMAS dataset [39]–[41],
[50], [65], the poorly discriminative top view is discarded from
evaluation. Since no specific instruction was given to actors
regarding their position and orientation, action viewpoints are
arbitrary and unknown.

B. View Dependent Action Recognition

1) Single-subject Action Recognition: Similarly to other
state-of-the-art approaches, our framework reports a perfect

TABLE II
PERFORMANCES OBTAINED ON WEIZMANN DATASET.

% Average accuracy

SLE [55] 100.0

Blank [43] 100.0

Wang [53] 100.0

Weinland [44] 100.0

Junejo [51] 95.3

Liu [39] 90.4

Zhang [47] 89.3

Vezzani [46] 86.7

recognition rate for view-dependent action recognition using
single-subject bounding box in Table II.

2) Multiple-subjects Action Recognition: In turn, Table III
reports performances using action-based bounding boxes and
interacting subjects. Examples of trained models are depicted
in Sup. 13. Our results are compared with the Random Forest
(RF) framework [42], which is considered to be the current
state-of-the-art approach on this dataset. In addition, results of
two popular bag of words (BoW) frameworks using nearest
neighbour classification are presented as a baseline [67].

SLE performs better than BoW approaches as illustrated
by performances obtained in the more complex and dynamic
background of D2. Although a RF-based framework outper-
forms SLE, instead of using action-based bounding boxes
it requires the extraction of a bounding box per subject,
which is not a trivial problem when people interact. In their
implementation, this is achieved using an advanced tracking
framework. Such a scheme could be integrated in our approach
which should also allow better performance.

TABLE III
PERFORMANCES OBTAINED ON UT-INTERACTION DATASET

BoW SLE RF

% Action bounding box
Single-subject
bounding box

[52], [67] [49], [67] ours [42]

D1 57 63 75 80%

D2 50 62 67 NA

C. View Independent Action Recognition

For view-independent action recognition, in addition to a
single view classification, we also report results of using
multiple views for recognition by applying a simple majority
voting rule [39]–[41], [45], [50], [65]. Note that testing in
view-independent scenario is performed with views which are
not included in the training data. Therefore, not only azimuth
view angles are unknown but also elevation angle varies within
a 45-degree range. As a consequence, testing is performed
using examples of unknown action primitives performed by
unknown people captured from an arbitrary and unknown
view. Similarly to [68], our framework requires a dense set of
action videos regarding viewpoints for the training of proposed
action manifolds. To generate them we follow the same
approaches [68] where the animated visual hulls are projected
onto 12 evenly spaced virtual cameras located around the
vertical axis of the subject. Since synchronisation among views
is provided, processing time can be reduced in the generation
of the meta-concept models. This is achieved by estimating
only once intra and inter-sequence neighbours. Then, these
neighbourhoods are used in producing each individual action
manifold using SLE. Examples of trained models are depicted
in Sup. 12.

In addition to SLE results, Table IV reports those published
for other state-of-the-art algorithms. [68] was not included,
because they use a completely different evaluation frame-
work where testing is performed using artificially generate
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observations from the visual hulls. To allow fair comparison
with [44], [45], [51], [65], results using 11 actions are also
reported, where the ’point’ and ’throw’ actions are discarded.
Unfortunately, since some authors use less challenging evalu-
ation frameworks, it is very difficult to draw any definitive
conclusion based only on this table. However, SLE shows
highest accuracy when compared to methods which have been
evaluated using the same stringent framework. This shows that
our descriptors are robust not only to subject style variability
and view variations in terms of azimuth, but also to variation
in elevation angles, which vary within a range of 45 degrees
in the IXMAS dataset.

Although [44] and [54] seem to obtain better results, both
frameworks are actually trained and tested using the same
camera views, whereas our evaluation is based on completely
unknown testing views. Thus, it is unclear how performance of
these two algorithms [44], [54] would extrapolate in the more
complex scenario of action recognition in unfamiliar views.
Similarly, performance of [48] is reported for a single sequence
(out of three) per actor which was selected to achieve best
accuracy. In such settings, our framework produces similar
performance (82.4%) using all available subjects. One should
also note that evaluations of [48] and others, i.e. [44], [45],
[51], are conducted only on subsets of available subjects which
makes them less comprehensive. Finally, performances of [40]
and [50] approaches are very similar to ours. However, since
they both rely on codebooks, they are likely to be less scalable
than ours to a higher number of actions.

TABLE IV
AVERAGE RECOGNITION ACCURACY OVER ALL CAMERAS USING EITHER

SINGLE OR MULTIPLE VIEWS FOR TESTING.

% Subjects
\Actions

Average accuracy
Single All
view views

SLE [55] 12 / 13 73.2 83.3

Lv [48] 10 / 14 82.9 -

Tran [54] 12 / 13 80.2 -

Liu [40] 12 / 13 73.7 82.8

Kaanische [50] 12 / 13 71.7 90.6

Liu [39] 12 / 13 71.7 78.5

Reddy [41] 12 / 13 66.5 72.6

SLE [55] 12 / 11 74.7 83.1

Weinland [44] 10 / 11 86.9 -

Junejo [51] 10 / 11 73.7 -

Yan [65] 12 / 11 64.0 78.0

Weinland [45] 10 / 11 63.9 81.3

VII. DISCUSSION

Exhaustive validation demonstrates the value of the pro-
posed methodology to model concepts defined by a set of
multivariate sequences showing stylistic variability. In com-
parison to current state-of-the-art approaches, SLE was able
to discover intrinsic nature of angle change in the image
object dataset as well as innate body configuration of 3D
MoCap data. In addition, SLE improved its performance in the

3D pose recovery task by introduction of additional training
samples. This suggests that SLE could benefit from even larger
training datasets. Although the cost of its neighbourhood selec-
tion procedure adds extra computational complexity compared
to standard embedding-based approaches, SLE remains signif-
icantly faster, i.e. by an order of magnitude, than Gaussian
process methods as expected from our theoretical analysis of
complexity (see §IV-C). Finally, SLE does not require tuning
of any parameter to perform well. Setting a unique value
for the length of the sequence fragment s in all experiments
and the more detailed analysis shown in Sup. 2 demonstrate
that the method is not sensitive to that parameter since wide
range of values is acceptable. Investigation of the impact of
the low dimension space dimensionality is beyond the scope
of this paper. However, according to the statistical learning
theory [2], our framework is subject to ’peaking phenomenon’
[69], i.e. there is an optimal number of dimensions for a
given training dataset that allows best performance. As a
consequence, the increase of dimensionality - d = 2 has been
used in all experiments - may further improve results when
enough training data is available. This may be an interesting
direction for future research.

Since a generated manifold by SLE encodes the unique
characteristic of the concept of interest, it is suitable for classi-
fication of unknown instances of concepts in different real life
action recognition scenarios. Although the discussed methods
cannot be compared purely on the reported performances,
all experiments confirm the versatility of proposed method-
ology producing very competitive results while overcoming
drawbacks of state-of-the-art methods. In particular, the action
manifold demonstrates its superiority in generalisation over
variations of style, view and speed within one class while
accurately distinguishing between actions of different classes.
However, when a concept is given a broad definition, e.g.
kicking which can be represented by instances of stand kick,
jump kick, turn around kick, features describing it lack con-
sistency makes the process of finding intra and inter-sequence
neighbours very challenging .This may lead to the generation
of a noisy model and poor classification performance. Fig. 11
highlights this issue by showing the action model associated
to the broad kicking concept with a few not perfectly aligned
instances of the action.

Fig. 11. Heterogenous nature of the kicking action manifold.

VIII. CONCLUSION

This paper presented a novel embedding-based dimensional-
ity reduction approach, Structural Laplacian Eigenmaps, which
learns data-driven manifolds designed for any concept which
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can be represented by a set of multivariate sequences. This is
achieved by encoding the intrinsic structure of multivariate
sequences in the form of two structural neighbourhoods,
which are then incorporated into the extended LE-based di-
mensionality reduction scheme. Then, this methodology is
further developed to model jointly several concepts of similar
nature within unified representation creating continuous space
between concept manifolds. The conducted experiments on
various datasets prove that the proposed methodology is able
to generate a low dimension manifold which summarises a set
of instances. The obtained manifold represents mathematically
the intrinsic nature of the concept of interest regardless of
stylistic variations, which is essential for classification tasks.
Based on SLE, a flexible and intuitive action recognition
framework was developed. It is competitive to current state-
of-the-art methodologies. Moreover, it is the only frame-
work which is able to report first-class performances in both
view-independent action recognition and human interaction
classification. This confirms practical value of the proposed
methodology.
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