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Abstract—This paper presents Generalised Laplacian Eigen-
maps, a novel dimensionality reduction approach designed to
address stylistic variations in time series. It generates compact
and coherent continuous spaces whose geometry is data-driven.
This work also introduces Graph-based Particle Filter, a novel
methodology conceived for efficient tracking in low dimensional
space derived from a spectral dimensionality reduction method.
Its strengths are a propagation scheme which facilitates the
prediction in time and style, and a noise model coherent with
the manifold, which prevents divergence, and increases robust-
ness. Experiments show that a combination of both techniques
achieves state-of-the-art performance for human pose tracking
in underconstrained scenarios.

Index Terms—Human articulated tracking, Human motion
modelling, Dimensionality reduction, Particle filtering.

I. INTRODUCTION

A variety of applications in computer vision, such as
visual surveillance, gesture analysis, human-computer

interfaces and computer animation, requires the interpretation
of human poses and their dynamics. Due to the complexity
of human motion, computer vision systems usually rely on
learning from human motion time sequences [1]–[10]. Despite
the fact human pose recovery is a very active research field,
it still remains a major challenge. Since there are so many
ways of performing even the simplest activity, such variability
affects significantly performance of applications, especially
when the activity is performed by an individual who is not
present in the training set [11]. In this work, we propose a
novel method to represent ‘styles’ in time sequences and its
integration in a novel tracking framework for human motion
analysis.

Here, we use the term ‘style’ to express a variation of a
given activity or movement that does not affect its intrinsic
nature, which means that a styled instance of an activity is still
recognisable as belonging to the same activity class. Variability
is caused not only by morphological and biomechanical differ-
ences between people, but also by multiple factors affecting
an individual’s behaviour such as mood, clothing, speed of
movement and environment. The combination of all these
factors is expressed in a continuous space or ‘style’ space.

This approach contrasts with simplified models where style
is decomposed into a small set of ad-hoc discrete states or
labels, such as identity or gait, which identify univocally a

J. Martinez is with ECIT, Queen’s University of Belfast, e-mail: j.martinez-
del-rincon@qub.ac.uk.

M. Lewandowski, J.C Nebel and D. Makris are with Kingston University.
Manuscript received -, 2013; revised -, 2014.

Figure 1. Stylistic variations for the gait cycle considering different subjects
and different speeds

subject and/or an activity [3]–[8], [12], [13]. In such frame-
work, only interpolation between those user-defined styles can
be contemplated which limits its practical usage. Nevertheless,
even under these limiting conditions, the generation of realistic
motion synthesis by combining linearly discrete styles [13]
illustrates the continuous nature of style.

Those ’style’ spaces are embedded in the multi dimensional
space of possible human poses which is high-dimensional in
its traditional limb based parameterisation [9], [10], [14]. How-
ever, it has been shown that the pose space for a given activity
has a significantly smaller intrinsic dimensionality. For in-
stance walking can be embedded into a two dimensional space
[15]–[18]. Since most methodologies suffer from the high
variability of human poses, dimensionality reduction (DR) is
an intuitive approach to generate a low dimensional representa-
tion which facilitates motion analysis. Unfortunately, stylistic
variability, which is intrinsic to human locomotion, is usually
lost during that process. As a consequence, this may result
in a loss of specificity by compressing important information
such as intra-activity variance and inter-subject variability.

Style-preserving modelling of human activities will lead to
more robust and successful human tracking systems. In this
work, we define the robustness of a tracking system as the
capacity of not diverging and maintaining its performance
when observation degrades, i.e. when ambiguity increases. In
tracking applications, the high dimensionality of data impacts
negatively on their performance [19]. This led to the devel-
opment of tracking approaches that address the size of the
solution space, either using efficient search strategies such
as annealing [20] and space partition [21] or by reducing
its dimensionality [1], [2], [6], [22], [23]. However, their
modelling limitations in terms of preserving stylistic variations
impact on tracking results in a loss of accuracy and robustness
when dealing with different subjects and/or activities.
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This paper focuses on the preservation of stylistic variations
of activities while reducing the dimensionality of human
motion feature space and on the usage of style modelling for
improving articulated tracking frameworks. As a first contri-
bution, we introduce a novel technique, Generalised Laplacian
Eigenmaps (GLE), which is able to produce, in an unsu-
pervised manner, continuous low-dimensional space activity
manifolds whose geometries are data-driven. By introducing
explicitly style as a discriminative constraint in the generation
of embedded spaces, the new methodology is able to model
variability due to stylistic variations caused both by a person’s
identity and the type of activity. In such continuous spaces,
the boundaries between similar activities, such as walking and
running, are fuzzy. Therefore, it is possible to consider that a
specific locomotion is a stylistic extension of another [13] (see
Figure 1), even though they are biomechanically different.

Our second contribution is a novel and integrated articulated
tracking scheme, Graph-based Particle Filter (GbPF), which
integrates the formation process of graph-based DR methods
into the tracking paradigm. As a result, this new scheme is able
to address natural limitations of model priors for articulated
motion tracking: it improves search efficiency, reduces risks
of divergence and increases the likelihood of recovering after
failure.

A. State of the art

1) Human Pose Modelling: In the context of human pose
modelling, a low dimensional representation not only has to
provide a compact and functional space, but also must be suffi-
ciently general to capture human pose variations. The inability
of linear methodologies like PCA to deal simultaneously with
both requirements, [24], has led to the development of many
non linear DR techniques which can be classified in two main
categories: embedding-based and mapping-based approaches.

Embedded-based approaches such as Laplacian Eigenmaps
(LE) [25], Isomap [26] and Local Linear Embedding (LLE)
[27], estimate the structure of the underlying manifold by pre-
serving geometrical properties of the data structure. However,
since they do not provide any mapping between low and high
dimensional spaces, this usually needs to be estimated in a
second optimisation step [28].

Mapping-based approaches, such as kernel PCA [29] or
Gaussian process latent variable model (GPLVM) [30], use
nonlinear functions to map the embedded space to the data
space and vice versa. They are optimised in conjunction
with the latent variables in a single optimisation process,
aiming at better results. However, such an approach increases
the computational complexity from of O(N2) for embedded
methods [31] to O(N3) [32]. As a consequence, their usage
when dealing with large datasets is problematic. In addition,
high complexity leads to problems of convergence [15], [30].

The exploitation of non-linear DR techniques for tracking
in a lower-dimensional space requires preservation of locality
and temporality in the low dimensional space: nearby points
in time and in high dimensional space must be mapped to
nearby points in low dimensional space. If this property is not
preserved, a smooth trajectory in the high dimensional space

will map to a discontinuous trajectory in the low dimensional
space. Exploiting such manifold would require artificially high
values in a noise model and/or empirical dynamic models
to deal with discontinuities, which leads to inconsistent pose
tracking [1], [17]. Several techniques, such as ST-Isomap [33],
back constraint GPLVM (BC-GPLVM) [34], Gaussian process
dynamical model (GPDM) [17] and Temporal Extension of
Laplacian Eigenmaps (TLE) [15], attempt to address this issue
by introducing temporal constrains to ensure smooth transition
in the latent space. Despite their success in modelling a given
activity, all these methods fail to represent stylistic variations,
such as different people performing the same activity or the
same person performing different variations of an activity.
This is due to two different factors. First, many non-linear
dimensionality methods are not able to generate a consistent
manifold when different stylistic variations are present in a
training set [25]–[27], [30], [34], [35]. Second, some methods
are style independent, i.e. style information is discarded on
purpose to generate subject independent models [15], [16],
[33].

A few approaches have been proposed to express style.
Some previous works focus on learning multi style models
over conventional low dimensional spaces [3], [7], [8]. Due to
the limitations of those DR techniques, style is lost during the
process and these methodologies need to mitigate the elimina-
tion of stylistic variations by reintroducing style in a second
learning step. Other approaches attempt to quantise styles
within the learning process of the low dimensional space.
Thus, Elgammal et al. [16] suggested a generative model
that explicitly decomposes the intrinsic body configuration
as a function of content and style. However, the complexity
of this method increases exponentially with the number of
considered styles. Pan et al. [4] proposed a more elegant
solution based on a hierarchical methodology that learns a
latent distribution for each given style. Finally, Wang et al.
[13] presented a multi factor Gaussian process model that
parameterises the space of human motion styles by a small
number of low-dimensional factors, i.e. gait and identity. All
these supervised [3], [5], [7], [8], [12], [16], [36] and semi-
supervised [4], [13] methodologies approximate the pose/style
space by a set of known discrete states related to people and/or
activity labels. However, they fail to model style variations
due to other factors such as environment, speed, clothes and
mood since factors that define a particular style are often
poorly defined, certainly non-discrete and hardly quantifiable.
Only unsupervised and data-driven methodologies offer a
framework which may be able to include the whole range of
style variability into a model.

To date, very few unsupervised approaches are able to
deal with style. Urtasun et al. [19] proposed a locally-linear
GPLVM (LLGPLVM) that requires some prior knowledge
about the activity of interest to constrain the optimisation
process. By imposing a tubular manifold geometry, an extra
dimension is allocated to the representation of stylistic vari-
ations. An important issue regarding this ad-hoc constrain is
that, the artificially imposed geometry is not always represen-
tative of the actual geometry of the data as explained later in
section IV-B3.
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2) Human Pose Tracking: Due to the high complexity of
articulated human tracking, tracking paradigms that aim at
finding efficiently a solution in the high dimensional space
possess a significant advantage. Partitioned sampling [21]
proposes division of the search space into several partitions
and sequential application of dynamics for each of them
followed by some weighted resampling. However, annealed
particle filter (APF) [20] is better suited for pose tracking since
its layered and hierarchical methodology takes into account the
hierarchy of articulation. By refining gradually the resolution
of the particle filter (PF) fitness function, the complexity of the
search is reduced drastically. While these techniques perform
satisfactorily in a calibrated multi-camera environment, they
are not suitable in monocular or uncalibrated scenarios [37]
due to the inherent ambiguity and the underconstrained nature
of the problem.

In these circumstances, human pose models have the po-
tential to constrain the solution space, which has led to the
inclusion of priors specifically for tracking. First attempts
were based on the simplistic assumption that human motion
is smooth, which can be modelled as a low-order Markov
model [38], [39]. In response to the non smoothness of the
human motion, early activity specific models [18], [40], [41]
proposed Gaussian mixture as a mean to capture and model
human pose priors. However, despite some success, their
models limit the ability to describe the complexity of the
human motion space. More recently, in order to address the
inherent problems associated with Gaussian approaches, more
advanced prior learning methodologies were integrated within
tracking paradigms [1], [3], [7], [42]. Unfortunately, almost
none of the DR techniques which aims at preserving style has
been quantitatively validated within a pose tracking framework
[4], [13], [16], [19], [43]. To our knowledge, only dynam-
ical binary latent variable model [35] handles style within
a tracking application. However, although it displayed some
generalisation properties across either subjects or activities, no
successful experiment has been reported combining both style
variation sources at the same time.

A common characteristic of all these prior models is the lim-
ited exploitation of the multi-hypothesis capabilities of particle
filter to perform an efficient search in low dimensional spaces.
Usually, hypotheses are distributed in the low-dimensional
space according to a generally unknown low-order dynamic
model associated to a Gaussian noise. Such approach has
two main drawbacks. First, since dynamic models are not
constrained by the manifold geometry, hypotheses can move
in the whole space which may lead to tracking divergence.
Second, a simple noise model does not characterise the actual
uncertainty inherent in the manifold. In addition to poor
tracking performance, it may contribute to further divergence.
[37] proposed tracking on the surface of an ideal toroidal
manifold to address the first problem. The known geometry of
the manifold simplifies the estimation of a dynamic model and
the propagation on the surface of the torus. However, although
this prevents divergence, usage of a generic noise model does
not tackle the second problem and reduces tracking perfor-
mance. Moreover, the generation of the torus manifold requires
previous knowledge about the geometry of the motion. Finally,

inclusion of several people or styles may require the design
of a very different geometry.

II. GENERALISED LAPLACIAN EIGENMAPS

Generalised Laplacian Eigenmaps is a DR method that
combines temporal and stylistic information as integral part
of its objective function. This is achieved by introducing
two types of complementary constraints into the Laplacian
Eigenmaps framework.

Our approach requires both the generation of a low dimen-
sional space and the mapping functions to map that space.
Mapping methods, where DR and mapping are optimised
simultaneously, suffer from high complexity. This leads to
lengthy training time and problems of convergence [15],
[30] which, in practice, make them unsuitable to deal with
large datasets. Since a large amount of data is required in
order to cover different inter and intra-subject styles, only an
embedded-based method equipped with mapping functions is
suitable.

Among these methodologies, Laplacian Eigenmaps is the
most appropriate, since it provides a mathematical framework
where new constraints can easily be introduced [9], [34], [44].
The insertion of these new constraints, modelled as connectiv-
ity graphs, allows extending the preservation of certain prop-
erties in the low dimensional space. Thus, not only locality,
as intended in the classical LE, but also other interesting
properties such as continuity and temporal sequentiality are
preserved. Although Isomap shares some of these properties
[33], [70], an LE extension (TLE) has already demonstrated
better performance when dealing with time series [15].

A. Graph construction

A set of P time series, Y = {Y 1, ..., Y P } = {ypk},∀k ∈
[1,Kp],∀p ∈ [1, P ], is defined as a set of P sequences of data
points with variable length Kp that occur sequentially in time,
where ypk is a data point distributed in a high dimensional
space (ypk ∈ RN ). Given Y , LE is able to discover its low
dimensional representation, Z = {Z1, ...ZP } = mp

k with
(mp

k ∈ Rn), where n << N , which preserves the local
structure of the original data by solving the Eigen value
decomposition problem [25]:

L · Z = λ ·D · Z (1)

where L is the Laplacian matrix and D is the corresponding
diagonal matrix with entries Dii =

∑M
j=1G(i, j). G is a

graph whose connectivity controls directly the similarity in
the embedded space [25].

In order to preserve simultaneously the temporal structure
and the style variance of the original data, both constraints
are expressed explicitly by building neighbourhood graphs
between the training samples. In this manner, local style neigh-
bours as well as local temporal neighbours are placed nearby
in the LE embedded space without the necessity of enforcing
any artificial embedded geometry as in [19]. Similarly to [15],
two types of neighbourhoods are automatically defined in GLE
∀ypk ∈ Y p:
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- Temporal neighbourhood Tk: it ensures temporal continu-
ity on the manifold. The 2τ closest points are defined as the
τ -previous and the τ -next points in the time series Y p.

Tk ∈ {ypk− , ..., y
p
k, ..., y

p
k+} (2)

k− = max(1, k − τ),

k+ = min(k + τ,Kp)

- Stylistic neighbourhood Sk: based on local geometry, it
ensures stylistic continuity between training instances which
are close in style by establishing correspondences between
repetitions of a given instance in the training set. First, a
temporal neighbourhood Tk is defined around the point ypk
and used as reference. Then, a time series similarity measure
is applied between the reference neighbourhood and all the
time series in the training set by means of a sliding window.

The score of each comparison is stored in a similarity
vector, where an average s-connected filter is applied for
non-minima suppression. All fragments Rhk , h ∈ [1, rk], with
similarity greater than b standard deviations from the average
of the similarity vector are considered as the rk-th repetition
fragments of the temporal neighbourhood Tk. Finally, stylistic
neighbours Rhk(l) are selected as the closest points to ypk inside
each repetition fragment Rhk , so the stylistic neighbourhood is
defined as follows:

Sk ∈ {R1
k(l1∗), ..., y

p
k, ..., R

rk
k (lrk∗ )} (3)

where
lh∗ = arg min

l∈Rh
k

‖ypk −R
h
k(l)‖ (4)

Different similarity measures, such as Edit Distance with
Real Penalty, Longest Common Subsequence and Edit Dis-
tance on Real Sequence [45], can be applied to detect and
align repetitions. In our framework, Dynamic Time Warping
[46] has been chosen since, in addition to its simplicity and
effectiveness [47], it does not require the two series fragments
to have the same sampling frequency. This property is essential
when dealing with multi-style time series, where time length,
sampling and periodicity are some of the features affected by
style variations.

Both neighbourhoods may be understood as constraints
(Eq. 7) and modelled as connectivity graphs using the LE
formalism (Eq. 5 and Eq. 6).

GT (i, j) =

{
e−‖yi−yj‖

2

i, j ∈ Tk
0 otherwise

(5)

GS(i, j) =

{
e−‖yi−yj‖

2

i, j ∈ Sk
0 otherwise

(6)

LT = DT −GT LS = DS −GS (7)

A manifold which includes temporal-stylistic coherence in
its structure is generated by introducing these constraints with
an appropriate balance. We propose to ponderate the balance
between temporal and stylistic variabilities by introducing a
weighting factor β. Since frame rate may be assumed to be
fixed for a given set of time series, this factor applied to
the stylistic graph increases its importance taken the temporal
variance as reference. Low values of β discard the stylistic

Figure 2. 3D Manifolds created with MoCap data from 3 individuals (red,
green and blue) performing each 3 variations of an activity, i.e. walking, fast
walking and running. a) LE. b) Temporal LE. c) GLE (automatic, β = 3.05).

Figure 3. GLE manifold created with Mocap data from 3 individuals (cyan,
green and blue) performing each 3 variations of an activity, i.e. walking,
fast walking and running. The learned GT temporal (black) and Gs stylistic
connectivity (red) are displayed for a subset of randomly selected points

variations in benefit of the temporal continuity, whereas high
values discard temporal information by considering mainly
style.

Once the graph balance has been calculated, graphs are
combined as a weighted addition of their Laplacian matrices.
The embedded space Z of dimension n is spanned by the
eigenvectors given by the n smallest nonzero eigenvalues
λ. They are obtained from the solution of the generalised
eigenvalue problem [25], which is deduced by minimising the
objective function:

arg minZT · (LT + β · LS) · Z (8)

subject to ZT · (DT + β ·DS) ·Z = I where I is the identity
matrix.

Under this formulation, LE, could be seen as a special
case of GLE where β = ∞. Similarly, TLE [15] can also
be considered as a particular case of GLE where β = 1.
The visual comparison between different LE-based methods
highlights the influence of the temporal and stylistic elements,
see Figure 2. The internal structures of the GLE manifold and
the connectivity given by the temporal and stylistic neighbours,
as expressed by the graphs GT and GS respectively, are
illustrated in Figure 3 where walking, fast walking and running
activities are modelled within a single low dimensional space.

B. Automatic estimation of graph balance

The balance weightβ controls the importance given to
each graph, i.e. temporal and stylistic, during optimisation.
Consequently, the choice of this parameter is essential. Fig-
ure 4 illustrates the effect of that choice. We suggest an
intuitive formula to provide automatically the appropriate
balance between temporal and stylistic information. It is based
on the normalisation of data variations along the time and
style dimensions. By selecting and normalising both Laplacian
matrices using the highest eigenvalues, the balance weight is
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Figure 4. GLE embedded spaces using 1 person and 3 styles of motion:
walking (red), walking fast (green) and running (black). Manifolds were
generated using: a) β = 1, b) β = 10 and c) β = 3.

calculated using the following equation:

β =
maxλLT

maxλLS

(9)

where the eigenvalues are calculated by performing the eigen-
decomposition for each graph individually (Eq. 1).

C. Mapping functions
Spectral methods such as LE allow unsupervised generation

of embedded spaces, but they do not provide explicitly any
mapping mechanism between the low and high dimensional
spaces. This issue has been tackled very effectively by Radial
Basis Function Networks (RBFN) [15], [16], [50]. Projection
functions are produced by training direct φ and inverse φ′ sets
of functions between high and low dimensional spaces.

φ : RN → Rn and φ′ : Rn → RN (10)

In this paper, we modify the standard RBFN learning process
in order to deal with two of its weaknesses. First, the type
of mapping activation functions should be selected to fit the
manifold geometry. However, since this information is usually
not known, assumptions regarding its geometry have to be
made. Second, the number of functions that compose each
set is a parameter which needs to be set by the user. Incorrect
estimation of these produces poor performance of the mapping
components by under or over fitting. Given that variance on
style is uncorrelated with temporal variance, standard spherical
functions based on Euclidean distance are not able to model
the space adequately. Consequently, multi-dimensional Gaus-
sian activation functions φj (Eq. 10) are more suitable since
they can assign different variance values to each dimension
(see Figure 5); as demonstrated in the experimental section.

φj = e(−(X−µj)T ·Σ−1
j ·(X−µj)) (11)

for j = 1, ..., ng , where X is the input feature vector, ng the
number of Gaussian functions to be discovered and µj and
Σj the mean and covariance respectively of each Gaussian
function. Under this definition, standard spherical functions
are seen as a simplification of Eq. 11, where Σj is a scalar
multiple of the identity matrix.

Since more suitable characterisation of the activation func-
tions provides higher flexibility about the number of coeffi-
cients ng to be learned, the choice of this parameter is less
critical. In our framework, it is estimated automatically by
applying the Figueiredo-Jain Gaussian Mixture Model (GMM)
parameters automatic estimation (FJ) [51]. In addition, we
apply Expectation Maximisation (EM) instead of k-means
[15], [50] to determine the mapping components since it has
the ability to derive elliptical clusters, instead of spherical
ones.

Figure 5. RBFN components, learned for ng = 200, projected on the 3D
mocap manifold (perpendicular views).

III. GRAPH-BASED PARTICLE FILTER

In this section, we introduce our probabilistic tracking
method based on particle filter that integrates manifold priors
for robust and multi-style pose estimation. The priors are
learned by applying a DR method, but in contrast to previous
approaches, our technique uses these priors as integral part of
the prediction. Thus, this prior embedding supports our particle
filter in two ways. First, it provides a propagation model
that contemplates simultaneously prediction in style and time.
Second, it automatically produces a suitable data-driven noise
model in the manifold which simplifies the filter configuration.
This prevents divergence towards invalid poses in the low
dimensional space by ensuring motion in the vicinity of the
manifold.

In this work, we focus on learning the priors using GLE.
This provides a propagation model with both temporal and
stylistic constraints, where temporal constraints are also em-
ployed to provide a style-specific dynamic model. The em-
bedding of the prior is consistent with the nature of the GLE
spectral method since it relies on graph information derived
during the learning of the manifold. However, and in order
to demonstrate the applicability of our tracking methodology
to any graph-based DR, e.g. Isomap and LE, experiments are
also performed using other DR techniques.

A. Methodology

Using the estimated manifold, the initial pose is set on its
surface. Then, particles must be distributed and propagated.
Traditionally, this is achieved by applying a low-order dynamic
model and a Gaussian noise around that prediction [1], [6].
In such scheme, tracking performance relies directly on the
characterisation of the noise function. Since there is no hard
constraint associated to the manifold, the estimated distribution
of particles could diverge outside the training space and pro-
duce unrealistic hypotheses, as Figure 6a illustrates. Although
models based on inverse kinematics [52] may provide more
accurate hypotheses, they cannot prevent divergence under
poor observations.

We propose to update dynamically the process noise using
information provided by the GLE prior model. Specifically, a
customised noise estimate is obtained for each point of the
continuous low dimensional space by representing the RBFN
functions as a GMM {πj , µj ,Σj}, j = 1...ng . Since these
particular functions (Eq.10) are more suitable than traditional
spherical functions for modelling and mapping the manifold,
they will not only lead to lower reconstruction error when
projecting our hypotheses from the latent space to the 3D
skeleton space, but also provide accurate modelling of the area
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Figure 6. Particle distribution on the manifold by: a) Gaussian noise addition
modelled by Eq. 11, b) Graph-based propagation defined by Eq. 13, for the
same noise variance

Figure 7. Graph-based triple resampling process. The particle xit−1 (cyan) is
resampled and projected to the manifold with a probability given by Eq. 12.
The resulting point from the second resampling mk (dark blue) is projected
forward in time (magenta) to one of the temporal neighbours (yellow). Finally,
the third resampling chooses the final hypothesis xit among the stylistic
neighbours (green).

around the manifold to produce valid hypotheses as defined
by the training set. The noise covariance, at any point x in
the low dimensional space, is modelled as the covariance of
a subset Nsg of the Gaussians set Ng belonging to the GMM
which correspond to that point according to the Mahalanobis
distance and a certain threshold %.

ΣNoise(x) =
∑

i∈Nsg(x)

Σi (12)

Nsg(x) = {∀j, (x− µj)T · σ−1
j · (x− µj) < %}

Nsg(x) ⊆ Ng
(13)

Although, Eq. 11 provides a data-driven noise model that is
coherent with the manifold and mapping function, it does
not ensure that the system will not diverge when only poor
observations are extracted from a few consecutive frames. An
improved strategy against divergence is achieved by integrat-
ing in the particle propagation those constraints provided by
the neighbourhood graphs. The differences in terms of noise
modelling between the standard particle filter and the proposed
propagation schemes are illustrated in Figure 6. In LE-based
methodologies, including GLE, connectivity graphs regulate
the proximity and locality of the poses on the manifold.
Therefore, this connectivity information is very valuable to
propagate and predict plausible hypotheses. This is exploited
by replacing the traditional deterministic propagation and
prediction steps of particle filters by a stochastic propagation
based on a triple resampling process, depicted in Figure 7.

First, particles are resampled to propagate valid hypotheses
according to their observation weight in the previous time step
(Alg.1, 1a-1c), as in traditional PF.

In the second resampling stage, temporal prediction is based
on the temporal graph GT , which replaces the function of con-
ventional dynamic models. It allows tuning the dynamic model
and deals with differences of temporal resolution between the
test and training data. In this resampling, each particle xit
is associated to training points in the manifold mp

k with a

probability proportional to their Euclidean distance dE .

p(mp
k|x

i
t) ∝ e(−dE(xi

t,m
p
k)/2σ2) (14)

Only one manifold point is randomly selected for each particle.
Its corresponding χ-th temporal neighbour mp

k+χ ∈ Tk is then
used as temporal prediction (Alg.1, 1d-1h) where χ ∈ N. χ
is a parameter that enables the temporal prediction, where the
standard value χ = 1 implies moving to the next neighbour
and therefore predicting actually the next pose in time. χ = 0
is equivalent to applying a zero order model. Higher values of
χ introduce a shift allowing dealing with test data generated at
a lower frame rate than training data’s. Therefore, training may
be performed using the highest available temporal resolution
and the resulted manifold may be applied to application data
with lower frame rates, as long as the value χ is tuned
appropriately according to the ratio between the two frame
rates.

In the third resampling stage, particles are projected in
the style dimension based on the stylistic graph GS . Again,
resampling is repeated for each particle and only one sample
per particle is selected. All the stylistic neighbours mp′

k′ ∈
Sk+χ associated to the temporal prediction mp

k+χ of the
resulting particle xit from the previous stage are taken into
account. Their weights are given by their values into the
stylistic graph GS (Alg.1, 1i-1l). Finally, Gaussian noise
p(xit|m

p′

k′) ∼ N(0,ΣNoise(m
p′

k′)), as estimated by Eq. 12, is
added to the final set of particles in order to allow some degree
of flexibility around the training manifold.

This triple resampling strategy (see Algorithm 1) provides
a stochastic propagation and prediction scheme, coherent with
the probabilistic PF framework, which allows moving on the
manifold surface. Conceptually, given a previous position of
a particle xit−1, the prediction xit−1 is:

p(xit|xit−1) ∝ p(xit|m
p′

k′) ·Gs(m
p
k+χ,m

p′

k′)

·GT (mp
k,m

p
k+χ) · p(mp

k|x(t− 1)i)
(15)

where the first term p(xit|m
p′

k′) adds the noise model and the
three following ones p(mp

k|xit), GT and GS correspond to
the triple resampling process. Although the second and the
third resampling could be merged by using G = GT + βGs,
considering them individually allows a higher flexibility on
the choice of different dynamics.

This methodology is designed to reduce the probability of
diverging, increase robustness, improve recovery after diver-
gence and facilitate the prediction in time and style by using
the implicit information stored in the connectivity graphs. Al-
though the complexity of the propagation algorithm increases
due to its probabilistic procedure, the added computation time
to the whole particle filter framework is almost negligible. This
is due to the fact that the most expensive part of the algorithm
is the evaluation of the likelihood function, whose processing
time only depends on the number of hypotheses, which is not
affected by the additional resampling process.

IV. EXPERIMENTAL VALIDATION

The proposed modelling technique GLE and the Graph
based tracking framework (GbPF) are validated using different
types of datasets, described in section IV-A. Section IV-B
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Algorithm 1 Particle filter with GLE priors and graph-based
propagation

Given a set of particles {xit−1, ω
i
t−1}Ni=1 which represents the

posterior probability of p(x(t − 1)|z(t − 1)) at time t − 1, and
a prior manifold {{mp

k}
Kp

k=1}
P
p=1

1: Select N samples from the set xit−1 with probability ωit−1:
2: Calculate the normalised cumulative probability cxnt−1 =∑n

i=1 ω
i
t−1∑N

i=1 ω
i
t−1

3: Generate a uniformly distributed random number r ∈ [0, 1] and
find the smallest j for which cxjt−1 ≥ r

4: Set x′it−1 = xjt−1

5: Generate M samples x̂kt−1 associated to manifold points mp
k

with a probability πkt−1 ∝ e−‖x
′i
t−1−m

p
k
‖/2σ2

where σ is a
normalisation factor

6: Calculate the normalised cumulative probability cπnt−1 =∑n
k=1 π

k
t−1∑M

k=1
πk
t−1

7: Generate a uniformly distributed random number r′ ∈ [0, 1] and
find the smallest j for which cπjt−1 ≥ r′

8: Set x′′it−1 = x̂jt−1

9: Propagate x′′it−1 to the next time step x′′it according to the χ-th
temporal neighbour in the manifold given by GT (x′′

i
t−1, x

′′i
t)

10: Generate B ≤ M samples x̃kt associated to the manifold points
mp′

k′ with a probability ρkt = Gs(x
′′i
t,m

p′

k′)

11: Calculate the normalised cumulative probability cρnt =
∑n

k=1 ρ
k
t∑B

k=1
ρkt

12: Generate a uniformly distributed random number r′′ ∈ [0, 1] and
find the smallest j for which cρjt ≥ r′′

13: Set x′′′it = x̃jt
14: Add noise, xit = x′′′

i
t + wit where wit N(0,ΣNoise(x

′′′i
t))

15: Evaluate likelihood function ωit ∼ f(xit, φ, It) over the input
image It

16: Estimate the mean state of the set xit, E[xt] =
∑N
i=1 ω

i
t ·xit, and

its high dimensional representation E[yt] = φ(E[xt])

focuses on GLE validation. First, the automatic parameter
selection and the mapping methodology are empirically jus-
tified. Then, the manifold geometry of the embedded space
is discussed and GLE is applied to model learning. Fi-
nally, our approach is evaluated quantitatively against relevant
methodologies for two computer vision applications, i.e. pose
estimation and image segmentation. In section 4.3, Graph-
based particle filter is evaluated within an articulated tracking
framework relying on GLE and other DR-based priors

A. Experimental setup

Although GLE is a general purpose DR technique, it is
particularly suitable for the analysis of human motion data:
they form time series whose stylistic variations should be well
represented in GLE’s continuous space. Since two embedded
dimensions are sufficient to represent the temporality of many
human activities [15], [17], we propose to add a third dimen-
sion so that style variability can be expressed in our model.
Parameter b was set to 1.5 in all our experiments.

In order to illustrate the independence of our methodology
regarding data, the validation process is conducted using two
types of motion sequences, i.e. MoCap and video datasets.
Since existing MoCap databases (e.g. [53]) do not contain
many stylistic variations for a given activity, we introduce a
new MoCap dataset, called ”walking2running” (see Figure 8).

Figure 8. From left to right: Walking2running dataset, CMU Mobo, INRIA
Ixmas and HumanEva II

It was recorded using an optical MoCap system ”Qualysis
Track Manager”, with a frequency of 120Hz. In each sequence,
the subject performed three varieties of ”bipedal locomotion”:
slow walking (2 miles/hour), fast walking (4 miles/hour) and
running (6 miles per hour). Transitions between these three
locomotion modes were also captured. These actions were
performed on a treadmill to allow speed control and ensure
consistency between subjects. In our experiments 6 subjects
(5 males and 1 female in the age range 24-41) produced 6
sequences of 4800-9000 frames each. 3D skeleton data are
represented by quaternions of 13 joint angles.

Image based validations were conducted using three stan-
dard databases. The first one, Mobo Dataset [54], provides
6 synchronised video sequences of 9 people walking (Figure
8). Images of the background are also provided. As previously,
the data were captured in a controlled environment: a treadmill
allowed recording people walking at 2 and 2.8 miles/hour 15%
of the dataset was manually annotated to facilitate quantita-
tive evaluation. The second dataset, IXMAS [55], provides
13 day-live actions, such as kicking, sitting and crossing
arms, performed 3 times by 11 subjects and observed by 5
synchronised cameras. The provided 2D foreground masks
are used as input data in our experiments. Finally, the third
dataset, HumanEVA II [64], has been chosen since it has been
used widely in the community to evaluate video-based motion
capture [64]. It offers a framework which allows comparison of
pose estimates to ground truth that was derived by a marker-
based Motion Capture system. This dataset is composed of
4 synchronised views of two subjects performing various
locomotion activities, i.e. walking, running and balancing.

B. GLE validation

1) Beta weight validation: Eq. 9 is validated using both
walking2running MoCap and MoBo video datasets. Figure
9(top) shows, for a range of β values, how the balance between
temporal and stylistic variance affects the manifold representa-
tion of an activity. In order to quantify the relationship between
stylistic and temporal variance, we propose a resolution based
metric which calculates the ratio between the stylistic and
temporal resolutions displayed in the neighbourhood graphs
associated with the low dimensional space. More specifically,
we define the Resolution Ratio as the ratio between the average
style distance and the average temporal distance between graph
neighbours.

Res.Ratio =

∑K
k=1

1
rk

∑rk
h=1 ‖mk −Rhk(lh∗ )‖∑K

k=1
1

k+−k−
∑
t∈Tk,t6=k ‖mk −mt‖

(16)
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Figure 9. Top: Evolution of the Mocap manifold according to the β parameter.
Bottom: Ratio between the style and the temporal resolution for different β
values for the Mocap (left) and Mobo (right) manifolds (Automatic estimated
values of β are highlighted).

Figure 10. GLE manifolds: a) Mocap data from 3 individuals (red, green
and blue) performing each 3 variations of an activity (walking, fast walking
and running). b)Using Mobo foreground masks, profile view, 3 subjects (red,
green and blue) performing each two variations (walking and fast walking).

where K is the total number of data points mk in the data set.
As discussed in section II-B and IV-A, three different cases are
expected according to β values. Lower values, i.e. β ∈ [0, a],
suppress style variation and highlight temporal variations of
an activity. Higher values, i.e. β ∈ [b,∞), suppress the
temporal variation and discriminate between different styles.
Finally, within our range of interest, i.e. β ∈ [a, b], the
generated manifolds preserve both the temporal and stylistic
variability of an activity. In this range, Figure 9 displays
plateaus where the resolution ratio between style and temporal
distances is around 1, which ensures similar consideration
of both variabilities. Conversely, the other two regions show
imbalanced ratios where there is predominance of one mode
over the other. Estimates of β, i.e. 3.05 for Mocap data and
2.86 for video data, generated from Eq. 9 fit in the plateau
areas.

Figure 10 shows the manifolds generated by GLE using
our automatic estimation of graph balance. Although, neither
geometry nor axis mapping was imposed on the embedded
space, GLE is able to exploit the three dimensions to generate
coherent manifolds.

2) Mapping evaluation: Mapping performance was eval-
uated quantitatively using the walking2running dataset. The
training set was composed of 2865 poses belonging to 2
different subjects, whereas 4800 frames from a different
sequence was used for testing. Following the methodology
proposed in [28], mapping accuracy was measured by eval-
uating the average distance between a 3D skeleton and the
skeleton resulting from its projection into the embedded space
and back in the original space. Our mapping approach is
compared against other RBFN based mapping using k-means
clustering and different types of activation functions, i.e. thin
plates, spheres and Gaussians. As shown in Figure 11, multi-

Figure 11. Mapping error for different RBFN learning approaches, using
Mocap ”walking2running” dataset.

dimensional Gaussian activation functions perform best (last
three columns). In addition, in the case of EM+FJ, not only
EM clustering provides a similar performance to k-means with
a considerably lower number of components, but, which is
more important, the model-order is estimated automatically.
The comparison between the performance for ng = 20 or
200 shows how incorrect selection of this value significantly
degrades performance.

3) Qualitative analysis of data driven manifold geometry:
The truncated conical shapes shown in Figure 10 are coherent
with the nature of data where different people walk or run
at different speeds. Assuming a constant sampling rate, given
the periodic nature of bipedal locomotion, a gait cycle with a
constant number of poses is expected. This number of samples
per cycle is reduced when increasing the walking speed,
although the samples are still temporarily and spatially similar
to those of slower cycles. Consequently, in order to maintain
the correspondence between similar poses, a reduction of the
diameter of the cycles is expected, as depicted in Figure
12b. In a hypothetical situation where a subject were able
to run at the speed of the capture rate (i.e. 120fps), only
one pose would be captured by cycle, degenerating the cycle
into a singular point (see Figure 12b). Therefore, locomotion
styles up to this speed would be modelled by a manifold
with a conical shape. If the subject were able to run even
faster, an inverted cone would appear above that vertex.
This explanation can be practically illustrated using sample
interpolation so that the number of poses is constant for every
step whatever the speed. As expected, a cylindrical structure
is obtained as the resulting manifold geometry (see Figure
12c & Figure 13). It can be argued that this conical data
driven geometry is, therefore, more coherent with the data
than the cylindrical manifold shape imposed in LL-GPLVM
(Figure 12a). Furthermore, unlike in a cylindrical geometry, in
a conical one, the temporal distance between two connected
frames is constant even when speed varies. Since we pursue to
apply tracking on the manifold surface, a constant time factor
simplifies drastically the definition of dynamic models. Finally,
we illustrate the coherence of the GLE manifold by comparing
poses which map at similar locations on the embedded space.
We focus on the analysis of crossing points between different
time series involving various individuals performing variations
of the same bipedal locomotion (for instance, subject one -
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Figure 12. Manifold shapes for bipedal locomotion assuming style variation
along the vertical axis: a) LL-GPLVM, b) GLE and c) GLE with resampled
data.

Figure 13. GLE manifolds obtained with either raw data (left) or resampled
sequences (right) containing a constant number of poses per cycle, inde-
pendently of the speed. Right figures show the projection on the first two
dimension, while left ones show the first and third dimensions.

Figure 14. Reconstructed skeletons for 3 crossing points between subject 1
waking fast (red) and subject 2 running (blue).

red in Figure 14- is walking fast while subject two - blue
in Figure 14- is running). On Figure 14, the reconstructed
skeletons show that both poses represent similar stages of the
locomotion cycle. Quantitatively, the average error per joint
[64] between poses over the 255 crossing points that appear
in our manifold is 2.4cm, which indicates that points of local
convergence between different time series are captured by the
manifold.

GLE has also been applied to non-cyclic activities. The ex-
periment was conducted using the IXMAS dataset [55] which
involves 12 different people performing different activities:
“sitting dow”, “kicking”,“scratching the head”, “checking the
watch” and “getting up”. For each sequence, salient points
are calculated from the provided silhouette [56] as input
vectors for GLE. Consistent results are obtained where stylistic
variation is preserved in both cyclic (Figure 10) and non cyclic
activities (Figure 15). Temporal continuity is represented in
two of the dimensions (similar to TLE) whereas style is
expressed along the third dimension. Activities that end with
the same pose as they start (scratching, checking watch,
kicking and cyclic motions) are connected in a circular shape
into the temporal dimensions similarly to cyclic motions, while
the other activities follow a rather linear and non-connected
structure (sitting down, getting up).

The fact that the two first dimensions represent temporal
information, whereas the third one expresses style is demon-
strated in Figure 16 and in virtual motion videos provided in
supplementary material. Note that they show that the manifold
could be also applied for realistic human motion synthesis
based on mixtures of styles [36].

Figure 15. Manifolds obtained using IXMAS dataset for non cyclic activities
(kicking, sitting down, checking watch, scratching the head and getting up).
Different colours represent diferent subjects. An example of the salient point
image used as input is given for the action “kicking”.

Figure 16. 3D poses projected from a manifold modelling different gait
speeds.

4) Quantitative analysis of the reconstruction error: A
comparative analysis is conducted to contrast GLE with six
standard non-linear DR algorithms. Following the methodol-
ogy evaluation proposed in [15], prior motion models are used
to refine estimated poses provided by imperfect estimation
systems, such as tracking frameworks [57], human detectors
and inaccurate MoCap capture systems [58]. More specifically,
a skeleton estimate is projected into the embedded space where
it is associated to its nearest neighbour, whose projection is
returned as the refined skeleton.

In order to simulate realistic pose estimates, a range of
Gaussian noises w ∼ N(0, 4), w ∼ N(0, 16) and w ∼
N(0, 64) is added to actual poses from the “walking2running”
dataset. This results in an average error of 3.3cm, 6.4cm and
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Table I
REFINING ERROR [CM].

Method
Error [cm]

No noise N(0,4) N(0,16) N(0,64)

Random selection 8.5

BCGPLVM 9.4 9.5 9.5 9.6

GPDM 7.3 7.2 7.4 7.5

Isomap 7.2 7.7 7.8 7.6

LLE 6.8 7.2 7.4 7.6

LE 8.8 9.3 9.7 8.9

TLE 2D 6.1 6.8 7.7 9.2

TLE 3D 5.6 6.1 7.9 9.6

GLE 5.4 5.9 6.7 7.3

12.7cm, respectively. The average error which would result
from selecting a random pose from the training dataset is
8.5cm. The influence of the mapping learning process is
removed from spectral based frameworks by applying the
same mapping methodology to all those techniques (L = 200
Gaussians), with the exception of GPLVM-based approaches,
where the mapping is an intrinsic part of the method. The
training set is composed of 2408 poses belonging to 3 dif-
ferent subjects, whereas 3359 frames from another 3 different
subjects (including a female) are used for testing. Without
counting stylistic variations between successive steps, each set
comprises 15 different styles: 3 people x (3 types of loco-
motion + 2 transitions). As shown in Table I, GLE performs
the best in all experiments, even under very noisy conditions,
where most methods perform worst than random selection.
Error of more than 5.4cm in the ideal case, i.e. without noise,
is explained by inaccuracy resulting from a combination of
mapping error and high variability in the dataset. Due to
the complexity of BCGPLVM optimisation process and the
relatively large size of the dataset, the method fails to converge
which leads to large errors.

This experiment also validates our decision of basing our
stylistic approach on a low-computational cost embedded
technique which computation time is at least one order of
magnitude lower that the mapping-based approaches. Whereas
GLE was able to learn its lower space in 47min, BCGPLVM
and GPDM required 27h and 8h respectively for a MATLAB
implementation on a Quad Core 3Ghz with 4 GB RAM.
This is in line with the known limitations of mapping based
approaches which suffer from high computational complexity
[15].

Figure 17 shows the geometries of the embedded spaces
obtained for different DR techniques. Most of them fail to
represent effectively temporal and stylistic variations in their
geometries. Inter-subject variability dominates above the other
variations with GPDM, while temporality is lost in favour of
large stylistic variations in the cases of LE and Isomap. On the
other hand, although TLE is able to preserve temporality, style
is completely discarded within its geometry. GLE is the only
method able to preserve both temporal and stylistic variations.
This can be observed along the third dimension where the
inter-subject and intra-subject variability is represented in a
common style space, while temporality is preserved in the

Figure 17. Embedded spaces generated by DR techniques, using MoCap
”walking2running” dataset. GLE produces the only geometry where inter-
person variability and locomotion style are preserved.

Table II
SILHOUETTE REFINEMENT VALIDATION.

Methods TPR TNR ACC

BcK. Subtraction + GLE 83.4 97.5 95.3

Adaptive motion detection [24] 61.3 95.5 90.8

Active Shape models [59] 67.9 94.8 91.2

other 2 dimensions.
5) Quantitative analysis of silhouette-based motion segmen-

tation: A second quantitative analysis is performed through
its application to silhouette-based human segmentation. In a
training stage, GLE embedded space is created using binary
silhouettes as input data. In the testing stage, extracted image-
based silhouette is projected onto the manifold, refined to the
nearest neighbour (NN) and projected back in order to obtain a
refined blob. The GLE-based segmentation system is compared
against two well-known methodologies: an advanced motion
segmentation pipeline based on adaptive threshold, shadow
removal and morphological operators [24] and an approach
based on Active Shape Models (ASM) [59], which uses prior
information to segment the shapes.

Our experiments with the MoBo dataset [54] involve 12
sequences of 51 frames each, comprising profile views of
3 different people walking following 2 stylistic variations,
i.e. walking and walking fast. For each sequence, binary
silhouettes were manually extracted to train the systems and
to provide ground truth for quantitative evaluation of motion
segmentation. The training and testing sets are composed of 6
different sequences each.

The standard metrics used to evaluate the refined silhouettes
against the ground truth are sensitivity or true positive rate
(TPR), specificity or True Negative Rate (TNR) and accuracy
(ACC) [60].

TPR = Tp/(Tp + Fn) TNR = Tn/(Fp + Tn) (17)
ACC = (Tp + Tn)/(Tp + Fn + Fp + Tn) (18)

where Tp and Tn are the numbers of true positive and true
negative pixels respectively.

As depicted in Table II and Figure 18, the GLE based
system produces more accurate blobs than the advanced mo-
tion detector and ASM. These results demonstrate that GLE
can complement conventional image segmentation techniques,
such as background substraction, when applied to human
segmentation.
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Figure 18. a) Ground truth, b) Silhouette extracted using [24], c) Silhouette
estimated using [61], d) Binary image extracted by background subtraction,
e) weighted response from GLE and f) refined silhouette.

C. GbPF validation

In this section, GLE Graph-based Particle filter is vali-
dated by comparing its performance with other state-of-the-art
methodologies, i.e. conventional particle filter [62], annealed
particle filter [20], and particle filter using GPLVM as a prior
[42]. Although PF and APF do not include any training, they
incorporate kinematic constraints based on human morphology
to discard invalid hypotheses.

The proposed tracking framework is validated using Hu-
manEVA [64] since it is widely accepted by the scien-
tific community, provides numerical validation without access
to groundtruth and is available for multi-style sequences
(walking-running can be considered as different styles of
bipedal locomotive activity). This point is especially relevant
for us given our goal of validating a tracking system able to
cope with inter-person intra-activity variability.

In order to demonstrate the generality of the framework
and how it is able to infer effective models of human poses
from a training set, we train the priors with a completely
different set of sequences, the “walking2running” introduced
in section IV-A). It is important to note that this dataset was
created using a different MoCap system with different marker
configurations and a different joint model than HumanEva.
Sequences S2 Combo 1 and S4 Combo 1 from HumanEva II
were used as test sequence. In sequence S4 Combo 1, frames
298 to 331 are ignored as accurate groundtruth is not available,
as reported in [22].

The state vector xt containing the parameters to be esti-
mated by the particle filter is defined as:

xt = {x, y, z, θ, ϕ, ϑ, l1, l2, l3} (19)

where x, y and z are the 3D coordinates of the base of
the spinal cord, θ,ϕ and ϑ are the global rotation angles
of the body regarding a fix 3D reference and l1,l2,l3 are
the coordinates of the 3D human configuration in the low
dimensional space. Parameter χ has been set to 1, since
training and test data display identical frame rates.

1500 particles were used in all the experiments based on PF,
and 300 particles in 5 layers, which have the equivalent time
complexity, for those relying on APF. The four synchronised
cameras that composed the video dataset were employed to
facilitate the comparison with previous approaches [22], [63],
[64], but experiments with fewer cameras were also performed.
Two sets of experiments were conducted using different like-
lihood functions, where the observation is modelled as either
edges plus standard asymmetric silhouettes (E+S) (Figure 19)
or bidirectional silhouettes (BS) [64] (Table III).

Figure 19 reports the accuracy obtained by GLE-GbPF
compared with alternative PF frameworks when using E+S

Figure 19. Performance comparison on HumanEVA II for walking sequences.
Standard deviation is given as error bar. Results are given by computing frames
[1-437] on S4 Combo 1 and [1:415] on S2 Combo 1. E+S observations from
4 cameras were used.

Figure 20. Tracking results on the LE manifold for S4 Combo 1 (HumanEva
II) sequence. The training samples are represented in red, while dark blue
corresponds to Graph-based particle filter estimations and green circles to
conventional PF. The right figure shows the projection on the first two
dimensions, while the left one displays the first and third dimensions.

observation. Note that, as reported in [64], methods are unable
to track the subject over the full length of the sequence.
Therefore, only the first section of each sequence is used in this
experiment. First, the figure reveals that the inclusion of DR-
based priors does not necessarily improve accuracy especially
when this prior is not able to represent properly the stylistic
variations of the test subject (i.e. GPLVM-PF), but also if they
do not properly constrain the search space (i.e. GLE-PF).

Second, as proved by comparing the results between the
tracking paradigms based on either conventional (i.e. LE-
PF and GLE-PF) and Graph-constrained (i.e. LE-GbPF and
GLE-GbPF) propagations, an adequate prediction schema for
restricting the search space, such as Graph-based PF, improves
tracking performance. This is illustrated in Figure 20 where
Graph-constraints prevent divergence from the trained space
even when using the limited prior model provided by LE.

In terms of the computational time required to evaluate the
same number of particles, our schema doubles the PF’s cost
due to the mapping functions and conversion from quaternions
to cartesian coordinates. However, this cost is one order of
magnitude lower than GPLVM-PF whose mapping functions
are much more expensive.

Table III provides a quantitative comparison between our
proposal and the state of the art, i.e. APF, using a more
advanced observation model, i.e. BS, exploiting between 2
and 4 camera views. Results with a single camera are not
reported because none of the methods managed to track a
subject through the whole sequence, i.e. average errors were
above 50 cm.

Accuracy of GLE-GbPF appears to be relatively good and
independent of the number of cameras, if more than one view
is available. This is due to additional information provided by
GLE and its exploitation through Graph based propagation,
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Table III
PERFORMANCE COMPARISON ON HUMANEVA II

Standard deviation is given between brackets. Results are given for frames
corresponding to walking and running using the BS observation likelihood

function and a variable numbers of cameras (C)
Error S4 Combo 1 S2 Combo 1 Average
[cm] [1:822] [1:755]

APF 4C 7.6 (1.5) 8.1 (1.4) 7.9 (1.5)

GLE-GbPF 4C 9.4 (1.7) 9.3 (1.5) 9.4 (1.6)

APF 3C 10.8(4.9) 8.8(3.2) 9.7(3.7)

GLE-GbPF 3C 9.9(4.4) 9.6(1.3) 9.8(2.8)

APF 2C 14.25(8.3) 10.1(3.1) 12.2(6.6)

GLE-GbPF 2C 9.7(2.1) 9.5(1.6) 9.6(1.9)

Figure 21. Numerical comparison for Graph-based Particle Filter and APF
for S4 Combo 1 (HumanEva II) sequence using 4 (APF in green, GLE-GbPF
in blue) and 2 cameras (APF in red, GLE-GbPF in cyan).

which helps to maintain the same level of performance when
observation quality degrades. APF demonstrates a very differ-
ent behaviour when the number of camera views decreases. Its
performance is seriously affected when the scenario becomes
underconstrained (see Figure 21).

In the ideal scenario, when views from the 4 cameras are
available, APF seems to remain the state-of-the-art method.
Clearly, APF combines efficient search in the pose space
and effective constraints based on morphological knowledge.
However, the fact that those constraints were learned, unlike
in our case, from a dataset very similar to the testing one, i.e.
HumanEvaI [64] where, for example, characters also perform
their activity along a circular path, may suggest that APF’s
tracking task was easier than GLE-GbPF’s.

In order to test further the potential of our framework,
an additional monocular experiment was conducted. Since a
single view showing a subject moving either towards or away
from the camera hardly provides any information regarding
individual limbs as illustrated by the failure of any system
to process the HumanEVA II sequences, experiments were
repeated using only short sub-sequences (i.e. 60 frames) where
individuals walked in a plane almost parallel to the camera
plane. Performances for 1 to 4 cameras are shown on Figure
22. These results confirm the superiority of GLE-GbPF over
APF when observation quality is degraded. GLE-GbPF’s usage
of priors and efficient hypothesis propagation helps to reduce
observation ambiguity.

Performance of GLE-GbPF is further illustrated in Figure
23 where pose estimates are projected in frames captured by
camera 1 in both HumanEva sequences. Poses are correctly
estimated during the walking and running phases, where the
main error comes from poor estimation of the global rotation
and translation parameters, as shown in Figure 23a third row,

Figure 22. Numerical comparison between GLE-GbPF(blue) and APF(red)
for SubSeq1&2 and varying number of cameras

fourth column or Figure 23b second row, first column. It can
also be noticed that accuracy in the estimation of the arms is
usually lower than for legs’ during the running phase. This is
due to the biomechanical differences observed between actual
running and hopping on a treadmill, which impacts more arm
movement.

As conclusion, our combined methodology shows excellent
generality and robustness properties outperforming the state of
the art in underconstrained environments, which are likely to
be more representative of realistic scenarios. In addition since
such performance is achieved using totally unrelated training
and testing tests, our methodology appears specially indicated
for those applications where a subject/environment specific
training cannot be assumed.

V. CONCLUSION

This paper presents GLE, a novel dimensionality reduction
approach designed to address stylistic variations in time series.
There are three main benefits of the method: a) the capacity
of preserving style while reducing dimensionality in an unsu-
pervised way, b) the generation of a continuous space which
simultaneously models temporal and stylistic variations and
c) the data-driven discovery of a manifold’s geometry. GLE is
based on the idea of weighted combination of temporal and
stylistic neighbourhood graphs within the LE paradigm. The
automatic estimation of the graph weight and an EM-GMM-
based RBFN mapping scheme ensure the efficiency of the
method. Experimental validation has shown qualitatively and
quantitatively that GLE outperforms existing dimensionality
reduction methods, since it is able to simultaneously cope with
stylistic variations both from different people and activities.

We also introduce, GbPF, a novel methodology conceived
for efficient tracking in low dimensional space derived from
a spectral DR method. The strengths of our approach are a
propagation scheme which facilitates the prediction in time
and style, and a noise model coherent with the manifold.
Tracking is constrained by the manifold surface, which pre-
vents divergence, increases robustness and the probability of
recovering after failure.

Finally, we propose a human pose tracker designed by
combining GLE and GbPF, which displays state-of-the-art
performance in underconstrained scenarios. As such, it extends
prior-based tracking to new subjects, scenarios and environ-
mental conditions which differ from training data.
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a)

b)
Figure 23. Results for Graph-based Particle Filter for HumanEva II S2 Combo 1 (a) and S4 Combo 1 (b) sequence using 4 cameras and bi-directional
silhouettes as observation. Frames: 1 to 700 and 822 respectively, every 50.

REFERENCES

[1] R. Urtasun, D. J. Fleet and P. Fua, “Gaussian process dynamical models
for 3D people tracking”, in CVPR, 2006.

[2] A. Elgammal and C. Lee, ”Body pose tracking from uncalibrated camera
using supervised manifold learning,” in NIPS EHuM Workshop, 2006.

[3] R. Li, M. H. Yang, S. Sclaroff and T. P. Tian, ”Monocular tracking of 3D
humanmotion with a coordinated mixture of factor analyzers,” in ECCV
2, 2006.

[4] W. Pan and L. Torresani, ”Unsupervised hierarchical modeling of loco-
motion styles,” in ICML, 2009.

[5] G. Taylor and G. Hinton, ”Factored conditional restricted Boltzmann
Machines for modeling motion style,” in ICML, 2009.

[6] Z. Lu, M. Carreira-Perpian and C. Sminchisescu, ”People Tracking with
the Laplacian Eigenmaps Latent Variable Model,” Advances in Neural
Information Processing Systems, vol. 20, pp. 1705–1712, 2008.

[7] C. Sminchisescu and A. Jepson, ”Generative modeling for continuous
non-linearly embedded visual inference,” in ICML, 2004.

[8] T. Matsubara, S. Hyon and J. Morimoto, ”Learning parametric dynamic
movement primitives from multiple demonstrations,” ICONIP, vol. 1, pp.
347-354, 2010.

[9] A. Elgammal and C. Lee, ”Inferring 3d body pose from silhouettes using
activity manifold learning,” in CVPR, 2004.

[10] K. Grochow, S. Martin, A. Hertzmann and Z. Popov, ”Style-based
inverse kinematics,” in SIGGRAPH, 2004.

[11] R. Poppe, ”Evaluating Example-based Pose Estimation: Experiments on
the HumanEva Sets,” in CVPR EHuM2, 2007.

[12] M. Vasilescu, ”Human motion signatures: analysis, synthesis, recogni-
tion,” ICPR, vol. 3, pp. 456- 460, 2002.

[13] J. M. Wang, D. J. Fleet and A. Hertzmann, ”Multifactor Gaussian
process models for style-content separation,” in ICML, 2007.

[14] A. Safonova, J. K. Hodgins and N. S. Pollard, ”Synthesizing physically
realistic human motion in low dimensional behavior-specific spaces,” in
SIGGRAPH, 2004.

[15] M. Lewandowski, J. Martnez del Rincon, D. Makris and J. C. Nebel,
”Temporal extension of laplacian eigenmaps for unsupervised dimension-
ality reduction of time series,” in ICPR, 2010.

[16] A. Elgammal and C. S. Lee, ”Separating style and content on a nonlinear
manifold,” in CVPR, 2004.

[17] J. Wang, D. Fleet and A. Hertzmann, ”Gaussian process dynamical
models,” in NISP 18, 2006.

[18] H. Sidenbladh, M. J. Black and L. Sigal, ”Implicit probabilistic models
of human motion for synthesis and tracking,” in ECCV 1, 2002.

[19] R. Urtasun, D. J. Fleet and N. Lawrence, ”Modeling human locomotion
with topologically constrained latent variable models,” in HMUMCA
Workshop, 2007.

[20] J. Deutscher, A. Blake and I. Reid, ”Articulated Body Motion Capture
by Annealed Particle Filtering,” in CVPR, 2000.

[21] J. MacCormick and M. Isard, ”Partitioned sampling, articulated objects,
and interface-quality hand tracking,” in ECCV 2, 2000.

[22] J. Darby, B. Li and N. Costen, ”Tracking human pose with multiple
activity models,” Pattern Recognition, vol. 43, no. 9, pp. 3042-3058, 2010.

[23] T. Jaeggli, E. Koller-Meier and L. Van Gool, ”Multi-Activity Tracking
in LLE Body Pose Space,” in 2nd Workshop on HUMAN MOTION
Understanding, Modeling, Capture and Animation, ICCV, 2007.

[24] C. Orrite, J. Martinez, E. Herrero and G. Rogez, ”2D Silhouette and
3D skeletal models for human detection and tracking,” ICPR, vol. 4, pp.
244-247, 2004.

[25] M. Belkin and P. Nivogi, ”Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in NISP 14, 2001.

[26] J. Tenenbaum, V. Silva and J. Langford, ”A global geometric framework
for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, p.
2319-2323, 2000.

[27] S. T. Roweis and L. K. Saul, ”Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, pp. 2323-2326, 2000.

[28] M. Lewandowski, D. Makris and J. Nebel, ”Automatic configuration of
spectral dimensionality reduction methods,” Pattern Recognition Letters,
vol. 31, no. 12, pp. 1720-1727, 2010.

[29] B. Schlkopf, A. J. Smola and K.-R. M, ”Kernel Principal Component
Analysis,” in ICANN, 1997.

[30] N. Lawrence., ”Gaussian process latent variable models for visualisation
of high dimensional data,” in NISP 16, 2004.
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