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Abstract

Ray tracing has become established as one of the most important and popular rendering
techniques for synthesizing photo-realistic images. However, the high quality images require
long computation times and memory-consuming scene description. Parallel architectures with
distributed memories are increasingly being used for rendering and provide more memory and
CPU power. This paper describes a new way to employ such computers efficiently for ray
tracing. Here each pixel is processed independently, so a natural method of parallelization is to
distribute pixels over the machine nodes. If the entire scene can be duplicated in the memory of
each processor (in the absence of global memory), a scheme without dataflow is used, otherwise,
objects composing the scene have to be distributed over processor nodes. In this last case two
strategies are applicable to the computation: object dataflow and ray dataflow.

The fastest of these algorithms is the one without dataflow. If we want to deal with
realistic pictures described by large scenes, we have to distribute objects among processors.
Accordingly a choice has to be made between object and ray dataflow. This choice is not easy
because of variability in computers, communication networks and scenes, also algorithms might
not be based on the same sequential model. Here, we propose a method which chooses the type of
flow to use dynamically. This arose from the development of a parallel ray tracing algorithm that
included the two modes of dataflow, i.e. a concurrent dataflow algorithm.

As our scheme allows the use of both algorithms, processors need to exchange objects
and rays. The processors’ load and some local parameters are used to choose between ray or
object dataflow at any instant. Global information is transmitted by a non-centralized strategy,
which assures scalability and the production of relevant messages. Finally, our algorithm offers a
dynamic management of concurrent dataflows, which intrinsically assures dynamic load
balancing.

Using concurrent dataflow our algorithm gives very encouraging results, as the
computation time for rendering pictures and the number of exchanged messages are reduced by
significant factors in relation to classical dataflow algorithms.

This concurrent algorithm is scalable as performances on a CRAY T3E with 64
processors shows. Finally the reduction of the magnitude of the flow of data communication
reduces the risk of network saturation, which might otherwise compromise the algorithm.
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1. Introduction

Ray tracing has become established as one of the most important and popular rendering
techniques for synthesizing photo-realistic images. Originally introduced in a practical form by
Whitted [19], it is one of the most complete and efficient rendering methods. The basic idea is
simple: when an observer sees a point on a surface, he actually looks at the result of interactions
between this point’s rays and other rays coming from the scene. These interacting rays may come
from light sources, reflections from other surfaces or refraction through transparent objects.
Although of high quality, the images require long computation times which limits the practical
use of the method, despite numerous acceleration schemes (e.g. Arvo and Kirk [1]). Moreover,
the quest for realistic rendering requires memory-consuming scene description details. To deal
with these problems parallel architectures with distributed memories are increasingly being used
for rendering and provide both more memory and CPU power.

We start this paper by studying different kinds of parallelization used in ray tracing. Next
we describe a new way to employ such computers efficiently for ray tracing, that is the use of
object and ray dataflow concurrently. Finally, we present results and a discussion of these results.

2. Ray tracing on DMPC

Our paper deals with the parallelization of the ray tracing algorithm on computers with
distributed memory. We start with a review of parallelization strategies used on parallel machine.
This may provide both more CPU power and more memory, although the increasing of memory
size is not always useful.

If data can be duplicated in the memory of every processor, a strategy without dataflow is
the most efficient. Otherwise, if data have to be distributed over local memories of the parallel
computer processors, communications between processors cannot be avoided. For such inter-
processor communication two principal strategies have been proposed: object dataflow and ray
dataflow.

2.1. Algorithms without dataflow

When the whole scene is duplicated on the local memory of every processor,
parallelization is achieved by distributing pixels on processors, each processor computing
independently a part of the picture. The efficiency of the algorithm is dependent on efficient load
balancing. In order to achieve good load balancing, an efficient strategy for picture division has
to be defined. There are two main kinds of distribution: static and dynamic.

When coherence between pixels is not used, static distribution gives good results. A
comparison is made in Murakami and al. [12]. If, however, we want to use pixel coherence for
accelerating computation, the use of some kind of dynamic distribution model seems to be
essential. Dynamic load balancing schemes based on the master-slave model [16, 18] are efficient
but not scalable. So for massively parallel computers, others strategies without any master [2], or
with a master hierarchy [6], have to be used.

Parallelization without dataflow provides the highest efficiency, but the size of processor
local memory limits its practical use.



2.2. Algorithms with object dataflow

As in the previous algorithms, each processor has to compute the entire subset of pixels
allocated to it. When a computation cannot be performed because of a missing object, this piece
of data is fetched and then copied in the local memory of the processor in order to complete its
calculations. There are several ways to fetch the missing object: use of a virtual shared memory
[4], a master-slave model [6] or a tree based architecture [7]. Again the way of distributing pixels
on the nodes of the parallel machine is the key to good load balance. Most strategies presented
for parallelization without dataflow (section δ2.1) can be used, but dynamic load balancing
associated with a static scheme seems to be indispensable in getting the best results.

With these strategies, it is quite easy to get good load balancing on the computer nodes.
Nevertheless the acceleration provided by these algorithms is strongly linked to the size of the
local memory of each processor.

2.3. Algorithms with ray dataflow

In this kind of algorithm, each processor is responsible for a part of the scene’s 3-D space.
Accordingly they have in their local memory the objects which belong to their region of concern,
then processors are only able to compute rays which cross their part of space.

When a ray leaves a region to enter another one the processor which originated the
computation sends the ray to the processor owning data of the crossed area. This last processor
continues the ray computations until the ray crosses another region of the space.

Load balancing of these algorithms is quite difficult, because it is the object partition
which determines the processor load. Many different scene partition schemes have been
proposed, most of them are based on uniform space subdivision [10], but some are based on pre-
sampling [3, 9].

An efficient algorithm with ray dataflow should also use dynamic load balancing
strategies. Load balancing is often performed using several processes on each processor [11, 17].
Some processes are involved in ray-object intersection computation, while others execute tasks
which are not dependent on objects such as the determination of the region of space crossed by
rays. With this strategy, processors which do not have any intersections to compute can be kept
busy executing this second kind of process.

Load balancing for algorithms with ray dataflow is very scene dependent, so balancing
schemes need to be very efficient regardless of scene complexity.

2.4. Conclusion

The fastest algorithms are those without dataflow. If a dataflow algorithm has to be used
because data do not fit into local memory, a choice between ray and object dataflow algorithms
must be done. The comparison between these two kinds of algorithms is not easy because of
variability in computers, communication networks and scenes, also algorithms might not be
based on the same sequential model. The literature has nothing to say about this choice.



3. A concurrent dataflow algorithm

Using results obtained previously [13], we define an alternative kind of dataflow
algorithm. We give the main principles of the algorithm we implemented: a concurrent dataflow
algorithm. Finally we show our experimental results.

3.1. An alternative algorithm

At first, we wish to deal with complex scenes. In this case we have no choice but to
distribute the work of computing the scene which means we have to use an algorithm with
dataflow. The use of massively parallel computers (MPP) such as the CRAY T3E leads to a
decentralized algorithm.

In previous work [13], we showed that classical dynamic load balancing algorithms are
often only used at the end of computation in order to correct load balance. This kind of strategy
does not change the way in which dataflow algorithms are executed, so only limited
improvements can be expected. Moreover it appears that the communication costs are still
important, despite asynchronous messages. So more efficient algorithms have to address the
problem of network load due to message handling.

Finally as there is no evidence of the superiority of one kind of dataflow algorithm over
an other, it seems better not to choose arbitrarily between these algorithms.

The new algorithm we propose is not a modification of a classical algorithm, but an
algorithm which radically changes the way pixels are computed. Our algorithm gives every
processor the ability to choose the most efficient type of dataflow dynamically. This arose from
the development of a parallel ray tracing algorithm that included the two modes of dataflow, i.e. a
concurrent dataflow algorithm.

3.2. Principles

With this algorithm, every processor can exchange both objects and rays at any moment.
The key is the way to choose between these two kinds of dataflow for optimal efficiency. This
choice has to be guided by two main goals:

1. Keeping optimal load balancing between nodes of the parallel machine.
2. Reducing the amount of communication.

In order to achieve these goals, every processor needs several parameters for obtaining
optimal choice. Some are local, but others are not. Every processor needs to know:

1. The load of every processor.
2. The number of rays which cannot be computed in the absence of communication.
3. The list of all the remote objects needed for the computation of the next intersection of each

ray.

Most of these parameters can be computed locally, but the load on other processors cannot.
This new algorithm needs a scheme which allows every processor to know the load of the others.
Furthermore, considering that we wish to work on a MPP, we have to avoid “master-slave



schemes” because it leads to communication bottlenecks. Global information should be
transmitted by a non-centralized strategy, which assures scalability and does not produce extra
messages. Thus each time a message is sent because objects are missing, it includes a header,
which contains the load of the sender i.e. the number of rays still to be computed. After a few
messages, each processor have the knowledge of the load of every other processor in the parallel
system.

With this scheme, every processor gets sufficiently precise information without any
communication cost. Using this information and its own parameters a node has the capability to
choose between object and ray dataflow at any instant.

The following is an outline of the algorithm:

IF my load is superior to a minimal load (I can send rays)
THEN

FOR every processors
IF my load is superior to the processor load

AND the number of rays to send is sufficient
THEN

Send rays to the processor
ENDIF

ENDFOR
ENDIF
FOR every missing object (each object is supposed to be own by a single processor)

IF the number of rays needing the object is sufficient
 THEN

Ask for the object
ENDIF

ENDFOR

For example, if a processor is busy, it will choose to send rays to processors which have a
lower load. If a processor is idle, it will choose to ask for objects in order to perform ray
computation locally.

Finally, our algorithm offers a dynamic management of concurrent dataflow, which
intrinsically assures dynamic load balancing.

3.3. Experimental results

Now that the principles of our algorithm have been explained, we present our
experimental results (the entire results can be found in [14]).

Our strategy has been implemented using the sequential ray tracer OORT [20]. The
results presented here have been simulated on a CRAY T3E with 128 processors interconnected
by a 3-D torus topology. We used PVM as a message-passing library. The size of each picture is
512x512 pixels and the maximal ray depth is 5. Scenes, i.e. Mountain5, Ring1 and Tetrahedron6,
come from the SPD database [8] and contain between 341 and 8688 objects.

We compare the results given by our concurrent dataflow algorithm with those of a
classical object dataflow algorithm, which appears to be more efficient than the classical ray
dataflow algorithm for the studied configurations [14]. The comparison between these two



algorithms is expressed in term of the time profit of the concurrent dataflow algorithm, defined
here as the processing time needed by the object dataflow algorithm divided by the processing
time needed by the concurrent dataflow algorithm.

The next figure shows the time profit obtained by the concurrent dataflow algorithm for
various scenes using 64 processors of the CRAY T3E:

Figure 1: Time profit depending of the scene partition.

At first it appears that whatever scene is rendered, the time profits provided by our new
algorithm are always quite high: the processing time of the Mountain5 scene has been divided by
almost 4! Moreover charts have very similar shapes, which suggests that the general behavior of
the algorithm is scene independent. The best results are obtained when each processor owns a
low percentage of the scene. When processors own less than the half of the object database,
profits vary between 3.9 and 1.5, otherwise they are between 1.7 and 1.

This fact can be easily explained by the way in which global information is transmitted to
processors. This information is distributed by messages generated for missing objects. When each
processor owns most of the scene objects, very few messages are sent, so refresh rates for this
information is quite low. Accordingly its precision may not be good enough to permit the best
choice in every case. One solution to resolve this lack of precision would be to generate extra
messages providing load information when the refresh rate is too low.

Our algorithm needs a sufficient flow of communications to reach its highest efficiency.
When there is too much communication - when less than 10 % of the scene is owned by each
processor -, some messages cause wait states. Then time profits provided by our algorithm
decrease. (Nevertheless they continue to be better than profit of 1.8).
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One goal of our concurrent algorithm was to reduce computation time by reducing the
number of messages which are sent. In the next figure, we show the message profits induced by
our new algorithm, defined here as the number of messages sent by the object dataflow algorithm
divided by the number of messages sent by the concurrent dataflow algorithm..

Figure 2: Message profit depending of the scene partition.

The charts on figure 2 are very similar to these of the figure 1, which clearly indicates that
our concurrent algorithm improves computation times due to the reduction of message numbers.
Message profits are between 6.1 and 1.7 when processors have loaded less than half of the
database. Again we see that waiting for messages decreases profits.

Our algorithm using concurrent dataflow gives very encouraging results, as the
computation time for rendering pictures and the number of exchanged messages are reduced by
significant factors in relation to a classical dataflow algorithm.

This concurrent algorithm is scalable, as performances on a CRAY T3E show. Finally the
reduction of the magnitude of the flow of data communication reduces the risk of network
saturation.
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5. Conclusion and future work

In this paper, we have presented a new kind of dataflow algorithm for parallel ray tracing
which fits on MPP. The use of a concurrent dataflow gives encouraging results, seeing that the
computation time for a picture has been reduce by 3.9 in relation to the performance of a classical
object dataflow algorithm. Moreover communication flows are substantially reduced.
With this new type of dataflow, saturation of networks can be delayed, results on massively
parallel machines are improved, and computation time reduced by a significant factor.

We are currently studying behavior of this scheme on networks of workstations and
exploring the use of this algorithm for the parallelization of other algorithms (e.g. progressive
radiosity [5,15]).

Acknowledgements

We thanks Eric Haines for supplying the SPD package [8] and Dr. John Patterson for
helpful comments on the paper. This work was supported by the CEA (Commisariat  à l’Energie
Atomique) and the EMSE (Ecole des Mines de Saint-Etienne).

References

[1] J. Arvo and D. Kirk. An introduction to ray tracing, chapter 5. A survey of ray tracing
acceleration techniques, pages 201-262. Academic press, 1989.
[2] D. Badouel. Schémas d’exécution pour les machines parallèles à mémoire distribuée. Une
étude de cas: le lancer de rayon. PhD thesis, Université de Rennes I - IFSIC, Rennes, October
1990.
[3] D. Badouel, K. Bouatouch and T. Priol. Distributed data and control for ray tracing in
parallel. IEEE computer graphics and applications, 14(4), pages 69-76, July 1994.
[4] D. Badouel and T. Priol. An efficient parallel ray tracing scheme for highly parallel
architectures. Advances in computer hardware v. rendering, ray tracing audiovisualisation
systems. Lausanne, CH, 2-3 September 1990, pages 93-106, September 1990.
[5] C. M. Goral, K. E. Torrance, D. P. Greenberg and B. Battaile. Modeling the interaction of
light between diffuse surfaces. SIGGRAPH’84, 18(3), pages 213-222, July 1984.
[6] S.A. Green and D.J. Paddon. A highly flexible multiprocessor solution for ray tracing.
The visual computer, 6(2), pages 62-73, March 1990.
[7] S.A. Green, D.J. Paddon and E. Lewis. A parallel algorithm and tree-based computer
architecture for ray traced computer graphics. Parallel processing for computer vision and
display. Leeds, UK, 1988, January 1988.
[8] E. Haines. A proposal for standard graphics environments. IEEE computer graphics and
applications, 7(11), pages 3-5, November 1987.
[9] V. Isler, C. Aykanat and B. Ozguc. Subdivision of 3-D space based on the graph
partitioning for parallel ray tracing. Proc. second eurographics workshop on rendering, univ. of
Catalonia, Barcelona, 1991.
[10] H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura and Y. Shigei. Load balancing
strategies for a parallel ray-tracing system based on constant subdivision. The visual computer,
4(4), pages 197-209, October 1988.



[11] W. Lefer. An efficient parallel ray tracing scheme for distributed memory parallel
computers. Proc. of parallel rendering symposium (1993), San Jose, California, October 25-26,
pages 77-80, October 1993.
[12] K. Murakami, K. Hirota and M. Ishii. Fast ray tracing. Fujitsu scientific and technical
journal, 24(2), pages 150-159, June 1988.
[13] J.-C. Nebel. A mixed dataflow algorithm for ray tracing on the CRAY T3E. Third
European SGI/Cray MPP Workshop (1997), Paris, September 11-12, September 1997.
[14] J.-C. Nebel. Développement de techniques de lancer de rayon dans des géométries 3-D
adaptées aux machines massivement parallèles. PhD thesis, Université de Saint-Etienne, Saint-
Etienne, December 1997.
[15] T. Nishita and E. Nakamae. Continuous tone representation of three-dimensional objects
taking account of shadows and interreflection. SIGGRAPH’85, 19(3), pages 23-30, July 1985.
[16] I. Pandzic, N. Magnetat and M. Roethlisberger. Parallel ray tracing on the IBM SP2 and
CRAY T3D. EPFL - Supercomputing review, 7, November 1995.
[17] T. Priol. Lancer de rayon sur des architectures parallèles : étude et mise en oeuvre. PhD
thesis, IFSIC, Rennes, June 1989.
[18] F.V. Reeth, W. Lamotte and E. Flerackers. Ray tracing speed-up techniques using MIMD
architectures. Programming and computer software, 18(4), pages 173-181, July 1992.
[19] T. Whitted. An improved illumination model for shaded display. Communication of the
ACM, 23, pages 343-349, 1980.
[20] N. Wilt. Object-oriented ray tracing. Wiley, 1994.


