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Abstract 
 

This paper presents a novel auto-calibration method from 

unconstrained human body motion. It relies on the 

underlying biomechanical constraints associated with 

human bipedal locomotion. By analysing positions of key 

points during a sequence, our technique is able to detect 

frames where the human body adopts a particular posture 

which ensures the coplanarity of those key points and 

therefore allows a successful camera calibration. Our 

technique includes a 3D model adaptation phase which 

removes the requirement for a precise geometrical 3D 

description of those points. Our method is validated using 

a variety of human bipedal motions and camera 

configurations.  

 

1. Introduction 
 

Geometric camera calibration is a valuable task because it 

reveals the relationship between the 3D space that is 

viewed by the camera and its projection on the image 

plane. Therefore, it is a key element for the interpretation 

of 3D articulated motions. 

 The common practice for calibrating cameras is to 

consider 2D views of rigid calibration patterns with known 

3D structure [1]. Although such a task seems to be 

straightforward, it is not often practical e.g. the camera is 

not accessible or software deployment is planned for a 

large number of cameras. 

 As a consequence, many auto-calibration methods have 

been proposed that exploit either the ego-motion of the 

camera [2][3][4] or observations of moving objects [5][6] 

[7][8]. However, in both cases, the observed scene or 

objects are assumed rigid. 

 This paper presents a novel auto-calibration method 

from unconstrained human body motion which relies on 

the underlying biomechanical constraints associated with 

human bipedal locomotion. This general approach 

automatically detects frames within a sequence which are 

suitable for camera calibration and does not require a 

precise geometrical 3D description of the human body. 

This method was validated using a variety of human 

bipedal motions and camera configurations. 

 

2. Previous work 
 

Tsai [1] introduced camera calibration based on the 

knowledge of the coordinates of 3D points and their 2D 

image plane projections. He presented mathematical 

solutions for either 7 non-coplanar points or 5 coplanar 

points.  However, these methods require that the camera 

views a calibration object of known geometry. As a 

consequence of this restriction, considerable research 

effort was invested in developing auto-calibration 

techniques. 

  Many auto-calibration methods exploit the ego-motion 

of the camera. For instance, Luong and Faugeras [1] and 

Pollefeys et al [3] used Kruppa equations to solve the 

calibration model. This assumes that intrinsic parameters 

are constant. However, there is no constraint regarding the 

viewed scene. There are two main drawbacks for those 

methods: first the Kruppa equations are highly complex, 

which is time consuming; secondly the algorithms usually 

require a large number of frames from different views. An 

alternative approach was suggested by Armstrong et al. 

[4]. They constrained the problem by assuming that the 

camera is under planar motion and also introduced the 

method of vanishing points.  

 However, the above methods cannot be used in the 

visual surveillance scenario, since the camera is usually 

fixed. Many researchers attempted to solve this issue by 

exploiting the observed activity of the scene and based 

their proposals on the assumption of constant human 

height and planar human walking. For instance, Renno et 

al [5] presented an auto-calibration method to estimate the 

relative position of the camera to the plane of motion. Lv 

et al. [6] obtained 3 orthogonal vanishing points from 3 

different locations of the human in the sequence and used 

[4] to obtain camera intrinsic and extrinsic parameters. 

Krahnstoever and Mendonca [7][8] suggested a Bayesian 

extension of the previous method to improve the accuracy. 

 Approaches that exploit the observed activity of the 

scene were also proposed for the calibration of 

surveillance multiple camera systems, e.g Lee et al [9] and 

Black and Ellis [10] estimated homography 

transformations for pair of camera views, Stauffer and 



 

Tieu [11] proposed a common planar model for groups of 

overlapped camera views , while Makris et al [12] tackled 

the problem of non-overlapped camera views.  

 While the methods described in [9][10][11] require 

coplanar motion of a large number of humans that are 

modeled by a rigid 1D model, our method only assumes 

3D articulated motion of a single human. 

 

3. Calibration using coplanar points 

 
3.1.Camera model 
 

We adopt the pin-hole camera model proposed by [1] in 

Figure 1. 

 

 
Figure 1: Camera Geometry and perspective projection 

 

 We define the world coordinate system (xwywzw), and 

the camera coordinate system (xyz). (XuYu) defines the 

image plane which is a front plane perpendicular to the 

optical axis z. The focal length f is the distance between 

the image plane and the optical centre o. The rotation 

matrix R and the translation vector T are used to  

transform the object world coordinate system (xw, yw, zw) 

to the camera 3D coordinate system (x, y, z), according to 

Eq. (1): 
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 The rotation matrix R is defined by the rotation angles 

Rx, Ry, Rz the translation vector is defined by the 

translation components Tx, Ty, Tz around and along the 

three axes respectively. 

 In the context of this paper, we want to calibrate the six 

“extrinsic” parameters (Rx, Ry, Rz, Tx, Ty, Tz) and the 

“effective” focal length fe measured in pixels/mm. 

 

3.2. Camera parameters estimation 

 
Coplanar calibration [1] relies on a set of known 3D 

coplanar points and their projected locations on the image 

plane. The calibration is divided into two stages. The first 

stage is to estimate the rotation parameters (Rx, Ry, Rz) and 

translations along x, and y axes (Tx, Ty) while the second 

stage is to resolve the ambiguity of the depth (Tz) and the 

effective focal length (fe). 

To simplify the calibration process and without loss of 

generality, the coplanar points are arranged to be on an 

arbitrary xwyw plane of the world coordinate system where 

zw=0. 

In the stage 1, the parameters Rx, Ry, Rz, Tx and Ty are 

estimated by Eq. (2): 
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where ri, i=1..9, are the elements of the matrix R. 

In stage 2, Tz and fe are computed as follows: 
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where yi and wi are estimated by Eq. (4) and Eq. (5) 

respectively: 
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In section 4, we will exploit the fact that the linear 

system of Eq. (3) is over-determined (2 unknown 

variables, 5 equations) and therefore a set of solutions can 

be computed. 

 

4. Human biomechanics and 3D model 
 

4.1. Unconstrained human body motion 
 

Although many calibration methods are based on 

observation of human activities, they rely on specific 

constraints such as constant velocity, linear or periodic 
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motion. Study of human biomechanics, however, reveals 

that human motion itself provides some specific 

constraints. In this section, we show that some of those 

constraints can be utilised for auto-calibration purposes.  

 Many human activities rely on some form of walking 

(e.g. running and dancing). Therefore, the underlying 

mechanical constraint associated with bipedal locomotion 

is worth investigating. When walking, each leg alternately 

undergoes two phases –“support” and “swing” phases 

[13]. The hip bone is rotated by being pushed and pulled 

by the leg and the shoulder bone is rotated in a reverse 

direction to compensate the angular momentum generated 

by the legs. The joints on the arms, shoulders and legs also 

move in order to maintain the balance of the body. As the 

hip and shoulder bones are rotated oppositely, it is clear 

that at some stage the joints on these bones are coplanar. 

This stage is defined as “mid-stance” phase [14], which 

corresponds to one leg swinging across the other 

(supporting) leg. At this specific instant, 5 points are 

coplanar: left shoulder, right shoulder, left hip, right hip, 

and mid-hip (see Figure 2). Therefore, if this instant can 

be detected, these points are sufficient for coplanar auto-

calibration (see Section 3.2).  

 

 
 

Figure 2: a) Articulated human body model and b) 

position of the five coplanar points during mid-stance 

position highlighted on a human silhouette. 

 

We performed further studies using motion capture data 

to check if other groups of 5 coplanar points could be used 

for auto-calibration. They revealed that other coplanar 

configurations exist involving also either the neck or the 

top of the head. In the rest of this paper, we will limit our 

experiment to the 5 points corresponding to the “mid-

stance” phase. 

 

4.2. 3D human body model 
 

Coplanar calibration relies on a set of 3D coplanar points 

whose 3D coordinates are known and their 2D image 

plane projections. Since human bodies vary with every 

individual and are not rigid objects, a single 3D model 

cannot capture the relative positions of the 3D coplanar 

points on a plane of the world coordinate system. 

Therefore, we designed a methodology which allows 

deformation of an initial coarse 3D model to produce 3D 

models tailored to specific individuals and postures. Since 

camera calibration is scale dependent, in this work we fix 

the width of the hip. 

The starting point of the process is a 3D human model 

produced by Leonardo Da Vinci as a result of his study of 

the human body [11]. This model is used as an initial seed 

to generate an initial model search space, K0, containing 

all allowed human configurations. Then models of K0 are 

used to calibrate the camera for each frame. A calibration 

accuracy criterion defined in Section 5 is used to select the 

3D models which have provided the best estimates of the 

camera focal length (fe). A new seed model can then be 

calculated using the selected models and a higher 

resolution model search space is generated. This process is 

iterated until a 3D human model allows the accurate 

calculation of the camera focal length. 

 

5. Auto-calibration method  
 

Our novel auto-calibration method is based on the 

coplanar calibration process described in section 3.2. It 

takes a sequence of images as an input and generates the 

intrinsic parameters of the camera and the extrinsic 

parameters between the camera and the person at “mid-

stance” frames. In the process, it detects the best frame 

showing the “mid-stance” posture and generates a 3D 

model of the 5 coplanar points. 

 Our method is much more general than traditional auto-

calibration techniques since it does not need a precise 3D 

description of the required 5 coplanar points (or key 

points) and is able to detect automatically which frame of 

a sequence, if any, can provide these coplanar points. In 

this piece of work, we assume that the image processing 

task of extracting the key points from each frame of the 

sequence is solved. 

The method relies on the fact that the linear system of 

Eq. (3), which is used to compute Tz and fe, is over-

determined. Hence, it can provide 10 estimates of fe and 

Tz: fe
i
 and Tz

i
 with i=1..10. If the key points are coplanar 

and a perfect 3D description of their positions (i.e. 3D 

model) is available, those estimates are all identical. 

Otherwise their variability reflects errors regarding key 

points coplanarity and 3D model. We propose to use the 

standard deviation of the fe
i
 to select the frames of a 

sequence where the key points are coplanar and optimise 

the 3D model which fits those points.  

If we define j as a frame of the sequence J and kr as a 

model of the model search space Kr at resolution r, the 

focal length estimate is calculated using the mean value of 

the best focal length estimates: 
re kjfef ,)(µ= , where j and 

kr are estimated by minimising the standard deviation 
ef

σ . 



 

 Inputs to our system are a set of frames where the key 

points have been extracted and an initial coarse 3D model, 

so (or seed model) representing the positions of these 

points. Then, we follow an iterative process of increasing 

model resolution, r. The process is organised in four 

consecutive steps:  

• generation of 3D model search space (Kr) using  model 

seed (sr) 

• estimation of camera parameters for each frame (j∈J) 

for each model (kr∈Kr) using Eq. (2) and (3) 

• selection of frames and models (j, kr) according to 

standard deviations of estimated focal lengths (see next 

paragraph for details) 

• and 3D model adaptation: generation of a new seed 

(sr+1) based on selected kr 
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Figure 3: Auto-calibration method description 

 

 The process stops once either the standard deviation of 

the estimated focal length reaches a certain minimum 

threshold or it starts diverging. The later situation happens 

if key points are never coplanar in the sequence. 

 Since selection of frames and models is key to our 

method, it is further described here. First for each frame 

and model configuration (j, kr), r
e

kj
i

f ,)(σ is computed 

using 
rkj

i

ef ,)( . Configurations with large standard 

deviations are discarded. Then, for each of the remaining 

configurations, a focal length is calculated 
r

e
kj

i

f ',')(µ . 

Finally 
re kjf ',')(σ is calculated for all these estimated focal 

lengths. Configuration within one standard deviation from 

re kjf ',')(µ are used for generating the next seed model. 

 We have described an auto-calibration method which 

relies on minimising the standard deviation of estimated 

focal lengths. It is general since it can be applied to any 

sequence of moving objects where 5 points are expected to 

be coplanar at some instant during the sequence. In the 

following section, our methodology is validated using 

different motions of the human articulated body. 

6. Experimental results 
 

In this section, three experiments are conducted to 

demonstrate the validity of our method. We use motion 

capture data so that the ground truth regarding the 3D 

positions of the points of interest is known. The points of 

interest (i.e. left shoulder, right shoulder, left hip, right 

hip, and mid-hip) from the articulated human were 

projected with set camera models and their 2D coordinates 

were used as input to our method. In the first experiment 

where we assume the 3D model is known, we validate our 

assumption regarding the use of standard deviation as an 

indicator of focal length accuracy (see Section 4.2). In the 

second experiment, the algorithm is tested using three 

different camera focal lengths on four different sequences. 

Finally, in the last experiment we exhaustively test our 

algorithm for all possible camera angles for a given focal 

length. Since the 3D model is unknown in the last two 

experiments, they validate our model customisation 

procedure.  

 Figures 4 and 5 show the results of the first experiment. 

It reveals the relationship between focal length, point 

coplanarity and standard deviation of focal length for a 

standard walking sequence and a sequence containing 

suspicious movements (sneaky walking). The camera is 

set on the floor at a distance of 5m from the subject and 

has a focal length f=50.8 mm.  

 Figures 4 a) and 5 a) show the sum of distance of the 5 

points to their “least-square-fit plane” (i.e. coplanar error) 

for all frames of both sequences. On Figure 4, there are 7 

“coplanar instants” (e.g., the frame 17, 44, 67...etc) which 

correspond to the periodic mid-stance positions during a 

standard walking. Although sneaky walking is not 

periodic, 8 coplanar instants can be detected nevertheless. 

 As it can be seen on Figures 4 b) and 5 b), the more 

coplanar the points are, the more accurate the estimation 

of focal length is (the horizontal purple line is the expected 

value: f=50.8). Figures 4 c) and 5 c), also reveal that the 

standard deviation of the estimated focal length is small 

when the points are coplanar. This result justifies our 

choice to use the standard deviation as criterion of 

coplanarity. Therefore, we can trust estimations whose 

standard deviation is minimal. Here focal lengths are 

predicted with an accuracy of 0.06% - frame 44 - 

(respectively 0.94% - frame 134) for the standard 

(respectively sneaky) walking. 

 In the second experiment, the algorithm is tested by 

using three different camera focal lengths (30, 50 and 100 

mm) on four different sequences- standard walking, 

sneaky walking, female cat walking and running. The 

camera is set to simulate a street surveillance scenario: the 

camera is 5m above and 6m away from the subject with a 

look-down angle of 45 degrees. 

 



 

Figure 4: Relationship between a) point coplanarity, b) 

focal length and c) its standard deviation for standard 

walking. 

 

 
Figure 5: Relationship between a) point coplanarity, b) 

focal length and c) its standard deviation (values are 

capped at 50) for sneaky walking. 

 
 Estimated focal lengths are presented as percentage 

error. We also show the Root-Mean-Square (RMS) error 

between the reconstructed 3D points and their positions in 

the motion capture data. The results are fairly accurate, as 

shown in Table 1. As it can be seen, auto-calibration on 

the standard and cat walking generally performs better 

than the other two sequences where there is no instant 

where key points have good coplanarity.  

 
Table 1: Results for different focal lengths and sequences 

 Fe = 30 Fe = 50 Fe = 100 

Walk 

type Error RMS Error RMS Error RMS 

Standard 0.7% 5 1.2% 18 0.5% 17 

Sneaky 0.3% 87 2.0% 185 2.1% 195 

Catwalk 0.3% 25 0.8% 45 0.9% 65 

Run 0.3% 31 2.8% 101 2.4% 121 

 

 In the last experiment, we exhaustively test our 

algorithm on the walking sequence for a full range of 

camera angle settings: Rx∈[0, 360] and Ry∈[0, 360], while 

we keep constant the focal length and position (f=50, 

Tx=0, Ty=0, Tz=5000). Since changes in Rz imply rotating 

the image plane around its perpendicular axis, which has 

no influence on the results, Rz was also kept constant. 

Figure 6 shows the accuracy of the estimated focal length 

for those settings. Apart from angles where the image and 

model planes are close to being parallel, the focal length 

can be estimated with an error below 4% for most settings.  

 
Figure 6: Estimation of focal length for a range of Rx and 

Ry. Dots represent estimated values within ±4% (filled 

dots represent estimated values within ±2%). 

 
 Focal lengths can be estimated accurately, only when 

the adapted planar models converge towards the expected 

model of the best coplanar frame in the sequence. This is 

illustrated on Figure 7. For each mid-stance frame of the 

standard walking sequence (see Figure 4), we display 

distances from the actual key point positions to the initial 

coarse model and then distances from the key points to the 

best adapted models. As expected, adapted models 

converge best at frame 44, when the key points are the 

most coplanar (see Figure 4).  



 

 
Figure 7: Model errors before (blue) and after model 

adaptation (magenta). 

 

 From experiment 1, we can confirm that standard 

deviation can be used as an indicator of focal length 

accuracy. Experiment 2 shows our method can cope with 

various types of human body motions without constraints 

of either periodicity or linearity. The last experiment 

shows our method can work with most of camera settings 

provided the image plane is not parallel to the model 

plane. 

 

7. Conclusions - future work 
 

We presented a method for auto-camera calibration which 

relies on the underlying biomechanical constraints 

associated to human bipedal locomotion. Our method was 

validated using a variety of human bipedal motions and 

camera configurations. Based on the “mid-stance” position 

where five joints of the human body (left/right shoulder, 

left/right hip and mid-hip) become coplanar, our technique 

was able to detect frames where the human body adopt 

that posture which ensures a successful camera calibration. 

Moreover since our method includes a 3D adaptation 

phase, a precise geometrical 3D description of that posture 

is not required.  

 We plan to use feature detectors and trackers to localise 

the joints on real video sequence to test further our 

method. We are optimistic that our method can deal with 

uncertainty coming with feature locations. Firstly, we will 

be able to select the five points from a variety of joints 

(i.e. shoulders, hips, head and neck) that can be coplanar. 

Secondly, our method can deal with noise, as we showed 

with the usage of a coarse 3D model. 

 

Acknowledgements 
 

The authors acknowledge financial support for the 

MEDUSA project from the Engineering and Physical 

Sciences Research Council (EPSRC) under grant number 

EP/E001025/1. 

References 
 
[1] R.Y. Tsai, An Efficient and Accurate Camera Calibration 

Technique for 3D Machine Vision, Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, Miami 

Beach, FL, pp. 364-374, 1986 

[2] Q. T. Luong and O. Faugeras, “Self-Calibration of a 

Moving Camera from Point correspondences and Fundamental 

Matrices,” International Journal of Computer Vision 22(3), pp 

261-289, 1997. 

[3] M. Pollefeys, L. Van Gool “Stratified Self-Calibration with 

the Modulus Constraint”, IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 21(8) pp707-724, 1999. 

[4] M. Armstrong, A. Zisserman and R. Hartley, “Euclidean 

Reconstructing from Image Triplets”, IEEE European 

Conferenceo on Computer Vision, Lecture Notes in Compute 

science, Vol 1064 pp 3-16, 1996 

[5] J.R Renno, P. Remagnino, G. A. Jones. “Learning 

Surveillance Tracking Models fro the Self-Calibrated Ground 

Plane” in 'Acta Automatica Sinica', Special Issue on Visual 

Surveillance of Dynamic Sc 29(3) pp. 381-392, 2003 

[6] F. Lv, T. Zhao, R. Nevatia, “Self-Calibration of a Camera 

from Video of a Walking Human”, Proc. of International 

Conference on Pattern Recognition, 2002 

[7] N. Krahnstoever and P. Mendonca, “Bayesian 

autocalibration for surveillance”, Proc. IEEE International 

Conference on Computer Vision (ICCV05), Beijing, China, 2005 

[8] N. Krahnstoever and P. Mendonca, “Autocalibration from 

Tracks of Walking People”, British Machine Vision Conference, 

Edinburgh, UK, 2006. 

[9] L. Lee, R. Romano, and G. Stein, “Monitoring activities 

from multiple video streams: Establishing a common coordinate 

frame,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence., vol. 22, pp. 758–767, Aug. 2000. 

[10] J. Black, T.J. Ellis, "Multi Camera Image Tracking", 

Proceedings of the Second International Workshop on 

Performance Evaluation of Tracking and Surveillance, 

December, Kauai, Hawaii, USA, 2001 

[11] Chris Stauffer, Kinh Tieu: Automated multi-camera planar 

tracking correspondence modeling. IEEE Conference on 

Computer Vision and Pattern Recognition,  pp.259-266, 2003 

[12] D. Makris, T.J. Ellis, J. Black, "Bridging the Gaps between 

Cameras", IEEE Conference on Computer Vision and Pattern 

Recognition CVPR 2004, June, Washington DC, USA, pp. 205-

210, 2004. 

[13] Sven Carlsoo, How Man Moves, Kinesiological Methods 

and Studies., Heinemann, London , 1972. 

[14] P. M. Galley and A. L. Forster, Human Movement-An 

Introductory Text for Physiotherapy Students. Churchill 

Livingstone 1987. 

[15] L. Da Vinci, Description of "Vitruvian Man", 1492 


