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Abstract. A novel probabilistic formulation for 2-D human pose recovery from 
monocular images is proposed. It relies on a bottom-up approach based on an 
iterative process between clustering and body model fitting. Body parts are 
segmented from the foreground by clustering a set of images cues. Clustering is 
driven by 2D human body model fitting to obtain optimal segmentation while 
the model is resized and its articulated configuration is updated according to the 
clustering result. This method neither requires a training stage, nor any prior 
knowledge of poses and appearance as characteristics of body parts are already 
embedded in the integrated cues. Furthermore, a probabilistic confidence meas-
ure is proposed to evaluate the expected accuracy of recovered poses. Experi-
mental results demonstrate the accuracy and robustness of this new algorithm 
by estimating 2-D human poses from walking sequences. 

1   Introduction  

Human pose recovery from a monocular camera is an important and challenging 
task in computer vision. Such technology would allow analysis of body postures for a 
range of applications from the study of athletes’ performances during competitions to 
the detection of antisocial behaviours from images captured from CCTV cameras. A 
robust system should be able to deal with the complexity of human poses which in-
cludes a large posture space, self-occlusions and appearance which varies with indi-
vidual, clothing and viewpoints. So far, techniques have only been proposed for con-
strained scenarios focusing on specific activities within a controlled environment.  
Therefore, a general solution remains a challenge for computer vision.  

The goal of pose recovery is to localise a person’s joints and limbs in either an im-
age plan (2D recovery) or a world space (3D recovery), which usually results in the 
reconstruction of a human skeleton. In this work, we concentrate on 2D pose recov-
ery. First, a sequence of 2D postures can be used for linear gait analysis [2]. Secondly, 
it is an essential step towards 3D pose recovery, which could be achieved by integrat-
ing camera self-calibration techniques [3][4]. The success of pose recovery is meas-
ured according to the accuracy of estimates of joint positions. However, we must 
accept some poses cannot be recovered because of self-occlusions or certain view-
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points make this task impossible. Therefore, a robust pose recovery system should be 
able to evaluate the accuracy of joint estimates to detect those difficult postures. 

    In this paper, we propose a novel bottom-up method for 2D pose recovery. A 
clustering approach segments body parts from foreground pixels according to some 
relevant image cues. Clustering is driven by fitting a 2D human body model to obtain 
optimal segmentation. The model, as shown in Figure 2(a), consists of 10 body parts 
which is consistent with the segmentation resolution expected from CCTV images. 
Our method, unlike many state-of-the-art approaches, requires no training stage, as 
body part characteristics are already embedded in the selected image cues. Since a 
key application of our technique is the initialisation of human body trackers, a prob-
abilistic confidence score is produced for each estimated pose. Therefore, initialisa-
tion is performed when postures are recovered with high confidence. Moreover, those 
scores could be used as prior observation probabilities to improve tracking. 

The structure of this paper is as follows. After presenting related previous work, 
we detail in Section 2 our pose recovery algorithm. Then, in Section 3 a probabilistic 
confidence measure of pose recovery is introduced. Finally, quantitative results are 
given in Section 4 and conclusions and future work are addressed in Section 5. 

 
1.2 Related Work 
 
Estimation of 2D or 3D human body poses from either images or videos has been an 
active research topic in computer vision. There are many approaches to this task. 
They are usually divided into 2 main categories [5]: Bottom-up approaches attempt to 
piece together body parts to build a full body whereas Top-down ones start from a 
general structure which is broken down to gain insight into its compositional elements. 
Bottom-up methods include breaking an image into pieces according to salient edges 
by applying normalised graph cut (NCut) [6]. Then parsing rules are used to recon-
struct human shapes. Other authors detect body parts by exploiting parallelism of part 
boundaries [7][8]. In [7], an edge map is computed by dividing edges in segments 
which are refined by constrained Delaunay triangulation. Then part candidates are 
identified by paring parallel lines according to anthropometric constraints. NCut and 
parallel lines have also been combined to recover body parts assembled using a Dy-
namic Programming approach [9]. Sigal and Black [10] estimate 3D poses using 
bottom-up 2D body part proposals. Primary part detectors (skin, head and limb detec-
tors) are used to generate 2D proposals to infer 2D and then 3D poses. Similarly, a 
bottom-up parsing approach can construct multiple body model candidates [11]. All 
of them act as weak classifiers which are boosted to produce a final model. Finally, 
2D poses have also been inferred by Data Driven Belief Propagation Monte Carlo 
algorithm using a variety of images cues, i.e. face, skin, shape and edges [12]. Among 
top-down approaches, a Pictorial Structures (PS) method has been proposed to model 
a holistic human body as a collection of parts arranged in a deformable configuration 
[13]. Poses are estimated by minimising a cost function consisting of individual body 
parts, and part paring. This was refined by adding constraints of symmetry and colour 
homogeneity in body parts [14] and tackling self-occlusion problem by using an ex-
tended body model containing occlusion likelihoods [15]. 3D recovery from stereo 
image sequences has also been suggested by linearly combing 3D pose proposals 
which are learned from 2D depth images and silhouettes from a large training set [16]. 



Recently, a top-down method has been used for body part tracking where trackers are 
initialised opportunistically by fitting a PS when a stylized pose is detected [17].  
 Top-down approaches are efficient in recovering general poses. However, 
they tend not to provide underlying body part segmentation and usually require com-
plex search. On the other hand, bottom-up approaches are accurate in estimating indi-
vidual limbs as local cues are used, but the full body structure may be estimated inac-
curately due to wrong body part paring. In order to tackle this, we propose an algo-
rithm which follows essentially a bottom-up approach to obtained accurate estimate of 
individual limbs, but also incorporates a body model fitting process to provide an-
thropometric constraints on detected body segments. 
 
2   Methodology 

2.1   Overview  

Our pose recovery algorithm is based on clustering foreground pixels to segment 
body parts. Since initialisation is key to the performance of clustering algorithms, we 
propose an iterative scheme with refined initialisation to achieve optimal partition. 
This relies on a 2D body model which is fitted on the generated clusters. Not only 
does it introduce anthropometric constraints which only reveal possible human pos-
tures, but it also provides clustering initialisation points. The main advantage of our 
method is, in addition to recover poses, it is also provide a probabilistic measure of 
confidence of the pose recovery process. 

The flow diagram of the pose recovery algorithm is shown in Figure 1. It takes a 
video containing a human figure as an input and generates for each frame a 2D skele-
ton with a confidence measure. The core of the algorithm is an iterative process in-
volving body part clustering and human body model fitting. Clustering partitions 
foreground pixels belonging to a human character into a desired number of body parts 
according to a set of relevant image cues. Human body model fitting fits a 2D ge-
neric human body model on the produced clusters by adjusting its scale, limb ratios 
and articulated configuration. The centres of the fitted model pieces are used as esti-
mates of centres of the body parts and therefore are used for clustering initialisation. 
These successions of clustering and model fitting processes iterate until the configura-
tion of the fitted body model reaches a steady-state. Finally, a 2D skeleton represent-
ing the recovered 2D pose is generated with a confidence measure which expresses 
the expected quality of the pose recovery process. 
 

 
Figure 1: Flow diagram of the proposed pose recovery algorithm  



2.2   Body Part Clustering  

The aim of clustering is to partition foreground pixels into a predefined number of 
body parts according to a set of relevant image cues. In this section, image cues are 
introduced and then the clustering process is detailed. 

2.2.1 Image Cues  

In this work, we select location, orientation, motion and colour as the cues to parti-
tion the foreground pixels. These cues are collected and concatenated as feature vec-
tors for each foreground pixel. This choice of cues aims at producing feature vectors 
which exhibit homogeneity within the body part and are distinctively different be-
tween adjacent body parts. Since body parts are displayed by a continuous set of pix-
els, except in some cases of occlusion, pixel location provides a first low level cue. 
Since human limbs are highly directional objects, they have been modelled as sets of 
parallel lines or trapeziums [7] whose main orientations describe the underlying 
skeleton. Therefore, directions of edges will be used as a cue to describe body parts. 
Because the human body is an articulated figure, pixel motion is usually discontinued 
from one body part to the other. The final cue for discriminating between body pieces 
is pixel colour since each body part can be modelled by homogenous colour or a low 
number of colour patterns [14].  

 Several imaging processing techniques have been employed to collect these image 
cues. Locations of the foreground pixels were obtained by conventional motion seg-
mentation, along with shadow detection and foreground cleaning. Orientation cues 
were obtained by interpolating orientations of edges over foreground pixels. First, 
foreground edges are detected by Canny Edge Detection. Then, for the purpose of 
calculating their main orientation and removing spurious edges and noises, edges are 
converted to line segments via Hough transform. Finally, orientations are interpolated 
to all foreground pixels. Motion cues consist of two elements – speed and direction-, 
which are computed by Optical Flow. We adopted Lucas and Kanade’s algorithm [18], 
as our algorithm requires dense motion information. Noise was suppressed by 
smoothing using a moving-average-of-5 temporal filter. Since preliminary experi-
ments showed that the colour space choice did not affect results in body part detection, 
colour cues were expressed by RGB values.  

Since each cue can be considered as a weak classifier, robust body part detection 
can only be achieved by cue combination. Clustering is performed in a high dimen-
sional space, called the cue space, where each foreground pixel can be projected to a 
location according to its feature vector. We define a projection function Φ, as shown 
in Equation (1), which transfers a 2D image pixel pi = (xi, yi) to an 8D feature vector  
pi

’
 =(xi, yi,θi, vi, βi, ri, gi, bi) where xi, yi,θi, vi, βi, ri, gi, bi  are the associated feature 

vector components: location (x, y), orientation (θ), speed (v), direction (β), and 
colour (r, g, b). 

),,,,,,,(),(: iiiiiiiiii bgryxyx βυθaΦ     (1) 



2.2.2  Foreground Pixel Clustering 

To produce confidence measures, we need to formulate our pose recovery problem in 
a probabilistic framework. Therefore, we adopt Gaussian Mixture Models (GMMs) to 
perform probabilistic clustering. The GMMs partition foreground pixels in the cue 
space into the desired number of body parts, i.e. 10. Therefore, a set of 10 probabili-
ties, P(pi|Cj), j∈ [0..9]so that ΣP(pi|Cj)=1, is produced for each foreground pixel pi, 
indicating the likelihood pixels belonging to each of the 10 clusters, Cj. Figure 2(b) 
illustrates some partition results where a 2-standard deviation boundary has been 
drawn to represent each cluster. 

GMMs are usually initialised by K-means clustering where the mean, weight and 
covariance of each of the Gaussian mixtures can be estimated. In standard K-means 
clustering, the process is initialised many times with random seeds so that optimal 
partition can be reached [19]. Since this is very time-consuming, we propose to use 
some prior knowledge of the body structure to initialise the clusters. A 2D articulated 
model, see Figure 2(a), is fitted onto either the foreground pixels for the first iteration 
or the produced clusters for subsequent iterations (see next section for details). This 
allows identifying the putative centres of the different body parts. These centre points 
are then projected to the cue space and used as the clustering seeds (Figure 2(c)).  

 

     
(a)              (b)              (c)             (d)           (e)            (f)                (g)                (h) 

Figure 2: (a) 10-piece generic human body model. (b) Results of foreground (red) cluster-
ing (green ellipses) during first iteration. (c) Seeds (yellow points) generated by model fitting. 
(d) Head found by omega head detector (dotted green) and fitted by a circular head model 
(blue). (e) Pixels recovered by GMM torso detector. (f) Rectangular model (green) fitted on 
torso pixels. (g) Model fitted after first iteration. (h) Final posture estimate (green and red 
crosses represent ground truth joint positions; yellow points and lines show recovered joints 
and skeleton). 

 
2.3 Human Body Model Fitting 
 
The aim of human body model fitting process is to initialise the clustering process and 
to generate a 2D skeleton. A 2D body model is fitted onto either foreground or clus-
tered pixels by maximising some overlapping costs. The process is hierarchical, 
where the most reliable parts are fitted first, i.e., head and torso, and are used as refer-
ences for fitting the limbs. Fitting is performed iteratively with an increasingly accu-
rate 2D model. During the first iteration, a generic model is fitted to the foreground to 
initialise the clustering. Then the model is resized according to cluster distributions. 



In the subsequent iterations, the model is fitted on the clustered pixels which represent 
segmented body parts embedded in the foreground.   
 
2.3.1 Human Body Model 
 
The 2D generic human body model (M) we use is shown in Figure 2(a). It is an ar-
ticulated figure consisting of 10 body pieces, M={ mhead, mtorso, mlua, mlla, mrua, mrla, 
mrul, mrll, mlul, mlll}2. Similarly to other research groups’, our model is composed of 
primary shapes [8][15][16]: the body model is made of a circle (head), a rectangle 
(torso) and 8 ellipses (limbs). Since this model provides anthropometric constraints, 
only plausible poses can be produced. The initial model is constructed using standard 
body part ratios [20] and its scale is estimated using the height of the segmented fore-
ground. Then, during the model fitting process body part ratios and individual sizes 
are adjusted to be able fit a wide range of viewpoints and postures. 
 
2.3.2 Model Fitting   
  
The model fitting process starts by locating the head position. This is achieved using 
the omega head detection algorithm [21], where an Ω-shaped model is used to localise 
the head and shoulders in the image by minimising a Chamfer distance measure of 
edges. Location and size of the detected head are then represented by a circle in our 
body model, as shown in Figure 2(d). Then, the torso is detected by modelling its 
colours using GMM. The method proposed in [22][23][24] was implemented. First, a 
sampling region for the torso must be defined: a foreground region below the head is 
selected. The GMM is trained by using the colours drawn from this sampling region. 
Some colours are discarded as a statistical model is used to filter out noise [23]. Fi-
nally, torso pixels are detected from the segmented foreground by the trained GMM, 
as shown in Figure 2(e). The torso pixels are then fitted with a rectangular torso 
model, see Figure 2(f). Position, orientation, scale and height/width ratio are opti-
mised, according to a “Mutually Overlapping Measure” (MOM):   
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Where  Amtorso and At denote, respectively, the area of the torso model and the area of 
the detected torso pixels. 

Finally, limbs need to be fitted. This process aims at translating and rotating the 
limb models to maximise some overlapping costs to the foreground or the body parti-
tions, i.e. clustered pixels. In the initial fitting, the overlapping area between the mod-
els and foreground is maximised, while in the subsequent fitting where the clustering 
result is available, the joint probabilities, as defined in Equation (5), between the 
models and clusters are maximised. The joint probabilities will be discussed in detail 
in Section 3. Figure 2(g) illustrates the result of fitting the model on the foreground.   
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After clustering, the body model is updated by estimating the length of limbs 
from the produced clusters. This is achieved by locating the joints at the clusters’ 
probabilistic boundaries using Equation (3): the length of a limb is defined as the 
Euclidean distance between the joints of adjacent clusters. 
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Where pi, Cj and Ck denote the foreground pixel and the adjacent clusters. Jj-k is the 
joint between Cj and Ck. The conditional probabilities are given by GMM clustering. 
Since head and torso models were located using more robust methods, only limb 
models are updated according to the lengths of limbs estimated from the clusters.  

The succession of clustering and model fitting processes iterates until the joint po-
sitions of the fitted body model reaches a steady-state. A skeleton, as shown in Figure 
2(h), is then extracted from the final body model and a probabilistic confidence meas-
ure is calculated. 
 
3. Probabilistic Confidence Measure for Pose Recovery 
 
An important feature of our method is that a confidence measure is provided for every 
recovered pose. This probabilistic value is useful not only for pose evaluation but also 
for many applications built upon pose recovery. For example, body part tracking 
using either Kalman or Particle filter requires a prior probability to know how much 
an observation can be trusted [25]. Our confidence measure is constructed using Bays’ 
theorem. If we assume the success of pose recovery is determined by the success of 
recovering all body parts and they are independent, the probability that a pose is re-
covered successfully P(pose) can be expressed by Equation (4). 
  

∏=
j

jXPposeP )()(                                                   (4) 

Where P(Xj) denotes the probability of each body part Xj ∈ {head, torso, rua, rla, lua, 
lla, rul, rll, lul ,lll} to be recovered successfully and P(Xj) expresses the  likelihood 
that the model  (mj) and its corresponding clustering (Cj) overlap, i.e. the joint prob-
ability )( jj CmP I .  

Assuming  p(mj) is independent from p(Cj), the joint probability can be obtained 
from the model fitting and clustering, according to Equation (5).  
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Where ∑ jm indicates the area of the model mj, ∑
i

ji CpP )|(  is the sum of the 

conditional probabilities of a pixel belonging to the cluster Cj (from the GMM cluster-
ing) over the entire foreground pixels and ∑

i
jji mCpP )|( I is the sum of the con-

ditional probabilities of the foreground pixels fitted by the model mj.. 



4    Experimental Results 
 
The algorithm was tested over the HumanEva (HE) dataset [26], which is used as 
benchmark for pose recovery. It provides motion capture and video data which were 
collected synchronously. Therefore, motion capture data can be used as ground truth: 
since cameras are calibrated, 3D data points can be projected on the 2D sequences in 
order to evaluate quantitatively 2D pose estimates. Moreover, a standard set of error 
metrics [27] is defined to evaluate pose estimations. We conducted experiments with 
2 walking sequences from these datasets: S1 Walking (C1) and S2 Walking (C1). 
Since the original sequences are quite long, only one complete walking circle in both 
walking sequences are used, i.e. frame 280 to 700 for S1 Walking (C1) and frame 340 
to 760 for S2 Walking (C1). These sequences were chosen to include a variety of 
walking postures, i.e. a complete circle, seen from different viewpoints. 
     First, to evaluate the general performance of our algorithm, poses in all walking 
frames are estimated without considering their confidence measure. Figure 3(a) shows 
the histogram of the “average pixel error” between estimated joint locations and the 
ground truth for S1 Walking (dark gray) and S2 Walking (light gray) [27]. Most errors 
fall between a 15-30 pixels range which is comparable with results reported by other 
research groups [25]. Then to validate our confidence measure, estimated poses from 
both walking sequences were binned by descending order, into 5 classes: Top 10, 50, 
200 and ALL poses, depending upon their corresponding confidence measure. Figure 
3(b) shows correlation between ground truth error and confidence measure supporting 
that the measure we propose is a useful indicator of the success of pose recovery.  
Figure 4 shows recovered poses from both sequences. The first 5 images from left are 
the ones with best confidence measures. As expected all of them are either frontal or 
back views as such views are the easiest to recover. The next 5 images show poses 
recovered from more difficult viewpoints, i.e. semi and full side views, which are also 
associated with good confidence measures, i.e. belonging to the Top 50 poses. 
 

  
                           (a)                                                                       (b) 

Figure 3: (a) Histograms showing the average pixel error between the estimated joint loca-
tions and the ground truth. Results for S1 Walking and S2 Walking are shown in dark and light 
gray respectively. (b) Correlation between pixel error and confidence measure. Estimated poses 
are binned according to their confidence measures. 
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Figure 4: Results of pose recovery for both S1 Walking (upper row) and S2 Walking (lower 

row) sequence. The first 5 images from the left are the ones with best confidence measures and 
the next 5 images, which are also selected with good confidence measures (Top 50), show the 
recovery from more difficult viewpoints.  

 
5.    Conclusions and Future Work 
 
In this paper, we proposed a probabilistic 2D pose recovery method using a combina-
tion of image cues. It is an iterative process of partitioning the foreground by cluster-
ing and fitting a human body model on the clusters. The clustering is initialised by the 
model fitting, while the body model is updated by the clustering. Since fitting and 
clustering are probabilistic, the estimated pose, obtained when the iterative process 
has converged, is associated with a confidence measure indicating the accuracy of the 
recovery. Our method was tested in two walking sequences containing a variety of 
postures seen from different viewpoints. Results demonstrate, first, our confidence 
measure can predict the accuracy of recovered postures and, secondly, our method is 
able to estimate reliably a substantial number of 2D poses. Therefore, the presented 
framework appears particularly suited to regular (re-)initialisations of body trackers. 
     Since the best recovered poses come usually from either frontal or back views, we 
plan to introduce a second body model, i.e. a side-view model, which should increase 
significantly the number of poses which are recovered with high accuracy. We also 
intend to integrate our method in a limb tracker framework [25]. Finally, we want to 
extend our work to 3D pose recovery by incorporating camera auto-calibration tech-
niques [3]. 
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