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ABSTRACT 
 
Recently the 3D-MATIC Research Laboratory has 
developed techniques for the generation of 25 3D models 
per second of captured data. Our aim is to use these series 
of 3D models to study deformations of the human body. 
However since the 3D models have different topologies, 
they cannot be used directly for analyses of non-rigid 
motions. Therefore the generation of range flows is a 
prerequisite to further studies. Since we have acquired a 
lot of experience in correlating pixels in stereo pairs of 
images, we have naturally investigated the use of similar 
techniques to track pixels associated to range data 
between successive images. We present a method that 
allows the generation of range flows using stereo and 
temporal matching. We then demonstrate the efficiency of 
our techniques by applying the generated range flows to a 
study of the deformation of human skin around joints in 
order to perform the skinning of the region of interest.  
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1. INTRODUCTION 
 
For more than a decade, people of the 3D-MATIC 
Research Laboratory have developed techniques for the 
generation of 3D models of humans from stereo pairs of 
images. Recently we have acquired digital video cameras, 
which allow us to generate 25 3D models per second of 
captured data [1]. Our aim is to use these series of 3D 
models to study deformations of the human body. 
However since the 3D models have different topologies, 
they cannot be used directly for the analyses of non-rigid 
motion. Therefore the generation of range flows is a 
prerequisite to further studies.  
Although the generation of optical flows has been an 
active domain of research for decades, the subject of 
range flow generation is quite recent. Moreover most of 
the research has been focused on rigid motions [2], [3] 
and motion of several objects [4]. Our work is closely 
related to the research done by Tsap et al., who were 
interested in generating range flows for non-rigid motion 
analysis. In particular they studied human skin 
deformations. They started first by investigating the use 

of active contours to find displacements of feature points 
between range maps [5]. More recently they offered a 
more efficient approach based on the deformation of a 
surface finite element (FEM) model incorporating 
material properties [6]. The main limitation of their 
original method is that it requires a priori knowledge of 
the soft tissue deformation: a FEM model and material 
properties. We should mention as well the work of Vedula 
et al. [7], where their starting point is not a set of range 
maps but a set of optical flows from 15 different cameras. 
Since we have acquired a lot of experience in correlating 
pixels in stereo pairs of images, we have naturally 
investigated the use of similar techniques to track pixels 
associated to range data between successive images. In 
this paper, we present a method that allows the generation 
of range data and optical flows using the same matching 
algorithm. Using these range data and optical flows, range 
flows can then be generated. We then demonstrate the 
efficiency of our technique by applying the generated 
range flow to a study of the deformation of human skin 
around the elbow, which allows us to perform the 
skinning of the region of interest. 
 
2. STEREO AND TEMPORAL MATCHING 
 
The technology we use to generate range data is based on 
stereo-pair images collected by the camera pairs, which 
are then processed using photogrammetric techniques [8]. 
The process of finding correspondences for each pixel 
from a stereo-pair of images is termed stereo matching. 
The matching algorithm used was developed by Jin, and 
an earlier version is reported in [9]. Since human skin is 
relatively featureless at the pixel spacings and digital 
precisions of our current video cameras (640x480 pixels), 
many mismatches occur. A way of overcoming this 
problem is to project a random speckle pattern onto the 
subject. Using strobe projectors, we managed to generate 
series of photorealistic 3D models, at a frequency of 25 
Hz by capturing the colour texture of the subject between 
two flashes of the strobe [1]. Another way of adding 
features on the subjects is to ask the subjects to wear close 
to the body speckle garments. Obviously that does not 
allow anymore the generation of models with 
recognizable colour textures, however that ensures sharp 
features, which do not depend on  the  projector  depth  of  
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Figure 1: Stereo and temporal matching

field, and features which are attached to the body during 
the whole sequence. Therefore by tracking these features 
over time we could generate optical flows representing 
the deformation of the human skin. By combining series 
of range maps with their corresponding optical flows, we 
can then generate the range flows we need for the analysis 
of soft tissue deformation. 
Since our stereo matcher generates horizontal and vertical 
disparity maps (the stereo pairs of cameras do not need to 
be parallel), it can be used for tracking the motion of each 
pixel between two successive frames generated by a given 
camera. Moreover each pixel has been associated with a 
range value during the stereo matching process; therefore 
the optical flows can be converted into range flows.  
If n is the number of images captured by each stereo pair 
of cameras, the algorithm for generating range flows 
operates in two steps: First stereo matching and then 
temporal matching. The outer structure of the algorithm is 
the following: 
For the n stereo pair of images (I0j and I1j): 

1. Match the images I0j and I1j 
2. Generate the range map Rj from the disparity 

maps Dxj and Dyj 
For each temporal pair of images (I0j,I0j+1): 

1. Match the images I0j and I0j+1 
2. Generate the disparity maps Dxj+1 and Dyj+1 
3. Generate by interpolation the range value of each 

pixel of I0j at the step j+1 
4. Iterate step 3 to calculate the range value of each 

pixel of I00 at the step j+1 
A diagram summarizing the algorithm and some results 
are presented on Figure 1. The range flow can be 

generated by temporal matching on the images I0j. 
However we could generate a second range flow based on 
the images I1j to increase the accuracy of the data.  
The matching algorithm itself is based on multi-resolution 
image correlation. We will only give a brief description of 
it, for more details refer to [9] or [1]. 
The algorithm takes as input a pair of monochrome 
images and outputs a pair of images specifying the 
horizontal and the vertical displacements of each pixel of 
the left image compared to the matched point in the right 
image. The matcher is implemented using a difference of 
Gaussian image pyramid: the top layer of the pyramid is 
16 by 12 pixels in size for a base of 640 by 480. Starting 
from the top of the pyramid, the matching between the 2 
pictures is computed. Then using the displacements, the 
right image of the next layer of the pyramid is warped in 
order to fit the left image. Thus if the estimated disparities 
from matching at the previous layer were correct, the two 
images would now be identical, occlusions permitting. To 
the extent that the estimated disparities were incorrect 
there will remain disparities that can be corrected at the 
next step of the algorithm, using information from the 
next higher waveband in the images. Since at each layer, 
the two images are supposed to match more or less, 
thanks to the warping step, only a neighbourhood of five 
by five pixels is needed for each pixel in order to find the 
matching pixel in the other image. Once the matching 
process is completed, the final displacement files 
combined with the calibration file of the stereo system 
allow the generation of a range map. 
Since the matching algorithm was designed specifically to 
process stereo pairs of images, we need to compare the 



quality of the output of the temporal matching with the 
output of the stereo matching. This comparison is done by 
generating for each range map a correlation map, which 
gives for each pixel the correlation factor with the 
corresponding matched pixel at the last step of the 
matching. This factor takes values between 0 (black) and 
1 (white), see Figure 2. 

 

   
(a)                               (b) 

Figure 2: Correlation maps from (a) stereo and            
(b) temporal matching 

A qualitative analysis between these correlation maps 
does not show any significant difference between them. In 
many cases the correlation maps from the temporal 
matching look even better (with no unmatched area on the 
subject) than those from the stereo matching. That is due 
to smaller perspective distortions of the subject. For 
example, on Figure 2(a) the left and bottom edges are not 
matched because there are high perspective distortions. 
The fact we need to dress our subjects with speckle 
clothes could appear as a big constraint of our technique 
for generating range flows. The alternative would be to 
draw a random pattern directly on the skin. This could 
give more accurate information about elastic properties of 
soft tissues. However it should be stressed we need these 
speckles because of the lack of features of the human skin 
at the level of resolution of our video cameras (640x480 
pixels). Intrinsically the human skin has enough features 
for a good stereo matching as we demonstrated by 
generating range maps of the human face without any 
added features using a pair of 2Kx2K single shot cameras, 
see [10]. 
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Figure 3. Segmentation: (a) filter ing of the image of 
reference, (b)(c) images from the sequence, (d) result 

As a result of our matching method we obtain dense 
disparity maps. Therefore we need to extract the objects 
of interest from the 3D models. We segment the range 
flow on object/background by the following way. As we 
place the object in front of a dark uniform background, it 
appears on the disparity maps as random fields (see 
Figures 1,2). The segmentation is performed by applying 
a threshold on the correlation maps as shown on Figure 3 
(a)-(c). A threshold value of 0.5 was found to be sufficient 
for our experiment. To filter out the random regions of 
high correlation in the background, we warp all binary 

images on the reference one using the optical flow fields. 
Then we take the intersection (logical AND) of all regions 
(Figure 3(d)). To improve the segmentation we remove 
small regions by morphological operations. The resulting 
binary mask is used to remove appropriate background 
vertices from the 3D models (Figure 1 - right column). 
 
3. APPLICATION: 3D MODEL  SKINNING 
 
The animation of 3D characters with animation packages 
such as 3D Studio MAXTM is based on the animation of 
hierarchic rigid bodies defined by a skeleton. Skeletons 
are supporting structures for polygonal meshes that 
represent the outer layer or skin of characters. In order to 
ensure smooth deformations of the skin around 
articulations, displacements of vertices must depend on 
the motion of the different bones of the neighbourhood. 
The process of associating vertices with weighted bones is 
called skinning and is an essential step of character 
animation. Tools are provided by these animation 
packages to ease that task, however it is stil l a process 
requiring time and artistic skills. 
Using the techniques previously described to generate 
range flows, we offer a semi-automatic method allowing 
an accurate skinning of scanned humans. 
First we select one reference image and its corresponding 
3D model from the sequence. Using the range flow we 
can trace each point from the reference image and obtain 
a deformation of any reference grid as shown on Figure 4 
for the 2D case. 
 

  
(a)                                   (b) 

  
(c)                                  (d) 

Figure 4. Using range flows for skinning: (a) point 
tracing, (b) the reference image with its reference grid, 

(c) (d) two images from the sequence with their  
deformed reference grids 

Our method consists in obtaining the joints of the skeleton 
bones and computing the weights of the points of the 3D 
model with respect to the bones. The manual step of the 
method is in the approximate selection of two regions 
belonging respectively to the parent bone and the child 
bone. Due to the direct relation between the image pixels 



and the vertices of the 3D model, this operation can be 
performed on the reference image. The rest of the process 
is fully automatic. Using the range flow we obtain the 
positions of the centre of each region in all the 3D models 
of the sequence. The centre and the orientation of a global 
coordinate system are set in the parent bone region and 
the positions of the centre of the child bone region are 
then registered in that system. We assume that the bone 
motion is nearly planar (so we do not consider bone 
bending). Therefore we can fit a plane passing through the 
origin of the coordinate system and all the registered 
positions of the child bone centres. Then we analyse the 
2D-motion in that plane. First we project the positions of 
the child bone centres in that plane, then since the motion 
is circular, we can fit a circle on these points. The centre 
of the circle represents the 2D position of the joint and its 
3D position is calculated. In Figure 5(a) the manually 
selected regions are shown as rectangles (the 1st rectangle 
represents the parent bone region and the 2nd one is the 
child bone region). The small circles show the positions 
of the centre of the child bone region in the parent 
coordinate system. Figure 5(a) also shows the fitted circle 
with its centre defining the position of the joint. 
Now two 3D vectors connecting the joint and the user 
defined regions can be fully determined for the whole 
sequence (Figure 5(b)). We consider them as virtual 
bones because they rotate around the joint and coincide 
more or less with the real bones. With a wider field of 
view, we could have calculated by the same method the 
positions of the 3 joints that would have defined more 
precisely the positions of these virtual bones. 
 

  
(a)                                    (b) 

Figure 5. (a) Joint determination and (b) virtual bones 

The next step of the method is to assign to each vertex of 
the 3D model a set of weights associated to each bone. 
We use the following model of vertex motion: 
 �
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where x’  is the deformed position of the vertex, n is the 
number of bones, wi  is the scalar weight associated to the 
i-th bone, xi is the original position of the vertex in the i-
th bone coordinate system and Ri is the transformation 
matrix of the i-th bone.  
The 3D-rotation matrices R can be found from the 
previously calculated motions of the virtual bones. Let r 0, 
and r be the vectors defining a virtual bone in the 
reference 3D model and in any other 3D model. A bone 
rotation can be described by an axis p and an angle αααα. 
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and using the Rodrigues formula: 
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For simplicity we present the 2D case of the motion of a 
two-bone system around a joint. For this we project the 
3D-vertices to the plane previously described. In this case 
the R i are 2D-rotation matrices and equation (1) becomes: 
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where w1 and w2 can be easily found. Real motions of skin 
points are more complex then those expressed by the 
model (1). They are determined not only by the skeleton 
but also by muscles and soft tissue properties. Therefore 
the weight values obtained from (3) do not necessary 
satisfy to the following conditions: Σ wi =1, 0 ≤ wi ≤ 1. To 
obtain consistent values we normalise and threshold the 
weights: 
 

 w1 = w1 / ( w1 + w2 ) 
 if w1 < 0  then w1 = 0 
 if w1 > 1  then w1 = 1 
 w2  = 1 - w1 
 

The weights are computed for each vertex of each 3D 
model generated from the sequence. To obtain a smooth 
distribution of weights the temporal averaging of the 
weights of each vertex is used. Figure 6 shows the result 
of the weight computation. The weight distribution for the 
parent bone is shown in a grey palette where a white 
value means w=1 and a black one means w=0. 
 

 

Figure 6. Weight distr ibution 

 

Figure 7. Weight computation for a rigid body 



 

     
 

    
 

(a)                                               (b)                                              (c)                                     (d) 

Figure 8. Two examples of skinning: (a) skinned mesh, (b) or iginal 3D model, (c) warping of the reference image and 
(d) difference between the warped and the original image 

 
Note that in our method of weighting, the child bone must 
have its own rotation. Otherwise equation (2) cannot be 
resolved with unique values of w1 and w2 and as a result 
we obtain an almost random distribution of weights. 
Figure 7 shows such result when the arm is moving as a 
single rigid body. The same problem occurs in the joint 
area, it is clearly visible on Figure 6. 
 
4. RESULTS 
 
For a qualitative estimation of the validity of the 
computed weights, we animated the reference 3D model 
using techniques widely used in skeletal animation. Using 
the stored rotation matrices (2) of the virtual bones and 
the weight distribution (Figure 6), we applied the equation 
(1) to the reference 3D model and reconstructed the range 
flow. Then the reconstructed range flow was compared 
with the original one. This procedure is illustrated in 
Figure 8 (a)(b). A qualitative analysis of the real 3D 
model and the animated 3D model does not show any 
significant difference between them. The only difference 
is that the real one has more vertices; this is due to the 
motion of the object in the field of view. Therefore we 
can say that the animated model simulates the general 
motion of the skin very well and that our automated 
skinning process is efficient. 
Another test was performed to visually estimate how our 
weight distribution transforms the texture. Projecting the 
motion of the virtual bones on the image and using the 
weight distribution, we applied the equation (2) to the 
reference image and reconstructed all the other images 
from the sequence by warping the reference image. Then 
the reconstructed images (Figure 8 (c)) were compared 

with the original images captured by the camera. Figure 
8(d) shows the difference between them where a grey 
value means there is no difference and a black or a white 
value means a big difference. This test shows that a 
texture transformation by this method can also be used in 
animation. The transformed image does not differ much 
from the real one except for some illumination changes 
(the problem of the lighting of texture during the 
animation should be solved separately). 
 
5. CONCLUSION 
 
This paper presents two main results. The first one is a 
method of range flow generation based on stereo and 
temporal matching. It is expected that this method will be 
useful in a wide variety of applications connected with 3D 
motion of objects. An example of such applications would 
be the creation of virtual actors [11]. There are many 
potential further developments for our technique. For the 
moment the generation of range flows is based on the 
stereo and temporal matching which are performed 
independently. The method could be highly improved by 
using the results of the temporal matching to predict the 
disparity maps for the stereo matching of the next frame. 
This could increase the accuracy of the 3D models and 
reduce the computational time because the search area for 
the stereo matching would be heavily reduced. Also that 
could be useful for the segmentation of the background. 
However our method in its current state has already 
proved its efficiency by generating range flows which 
allowed the successful study of a non-rigid object motion: 
the deformation of a human arm. 



The second result of the paper is the application of the 
generated range flows to study the deformation of human 
skin around joints in order to perform the skinning of 
regions of interest. It was shown that 2D- and 3D-
analyses of a range flow could be used to obtain the 
weight distribution of a skin mesh. We expect in the near 
future that our work will be part of plug-ins written for 
the main commercial animation packages. The skinning 
task, which is stil l a skilled and artistic process, would 
become then semi-automatic and based on real data. That 
should contribute to cheaper and more realistic 
animations. 
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