
Keyframe interpolation
with self-collision avoidance

Jean-Christophe Nebel
University of Glasgow

Computer Science Department

Glasgow, G12 8QQ, UK

Abstract. 3D-keyframe animation is a popular method for animating ar-
ticulated �gures. It allows artistic expressiveness by providing control to
the animator. The drawback of this process is that it requires signi�cant
e�ort from the animator. Recently, work has focused on high level tech-
niques such as adapting reference movements. However, whatever the way
the animation is produced, the �nal process is an interpolation between
keyframes. Our problem is that these interpolations do not deal with the
avoidance of collisions between the limbs of an articulated �gure, either
an animator has to add new keyframes or the motion produced contains
unrealistic positions. In this paper we present a new interpolation method
producing self-collision free paths based on geometrical properties. Our
method is a high level interpolation in which any classical interpolation
method can be used. Experimental results using a human model show
that the animator can reduce the level of detail needed for describing a
movement and still get realistic results at interactive speeds.

1 Introduction

3D-keyframe animation derives from the principles of traditional animation that
were mainly developed in the 1930's at the Walt Disney studios. The animator
de�nes a movement by providing a set of poses, then the motion is obtained
by simply interpolating between these keyframes. Despite the fact that it is
quite an old technique and many other animation methods exist now such as
physics-based or behavioral methods [17], it is still a popular method for ani-
mating articulated �gures. It allows artistic expressiveness by providing control
to the animator and only geometrical properties are needed. It is used through
a very wide range of applications from computer aided choreographic design [7]
to animation of volumetric objects (\Visible Human Walk" [22]).

The drawback of this process is that it requires signi�cant e�ort from the
animator. De�ning a movement often requires a high level of detail to ensure
that the interpolation curves induce the desired motion. In order to ease this
task, a few tools have been o�ered for building poses such as forward kinematics,
inverse kinematics, emotional posturing [8] and genetic algorithms [9]. Recently,
work has focused on high level techniques such as adapting reference movements
obtained either by keyframing or motion capture. The higher level of control
provided reduces the user's load of direct speci�cations for the desired move-
ment. Two approaches have been followed: interpolation between keyframes of



reference motions [10], [5] or derivation of a motion from a reference motion by
adding emotions or behaviours to keyframes [19],[8].

However, whatever the way the animation is produced, the �nal process
is an interpolation between keyframes typically using cubic splines. In order to
have more realistic motions, interpolations controlled using kinematics [16], [13]
or dynamic constraints [15], [2] have been proposed. Our problem is that these
interpolations do not deal with the avoidance of collisions between the limbs of
an articulated �gure. If low level keyframe animation is created interactively,
the animator can avoid self-collisions at the cost of adding new keyframes which
appear to be necessary for a realistic interpolation. In the case of the adaptation
of a reference motion, either the animator can correct the frames produced or if
the animation is created automatically for virtual reality applications [19], the
produced motion may contain unrealistic positions. The purpose of this research
work is to o�er a new interpolation method producing self-collision free paths
which frees animators from interpolation considerations and leads to realistic
motions when animations are generated automatically.

Section 2 relates our e�orts to previous work. Section 3 gives the principle
of our interpolation methods. Section 4 describes the details of our algorithm.
Finally, Section 5 presents and discusses some experimental results.

2 Related work

When multiple body parts or several objects are animated it is possible for them
to collide and interpenetrate. This is often an undesired situation. This problem
has been addressed in many di�erent ways.

In the case of animations that are produced using physical simulations,
once collisions are detected, reactions to these collisions are computed. This has
been e�ciently implemented for the dynamical control of clothing animation [18]
and the simulation of rigid object collision [3]. Despite the fact they deal with
responding to collisions whereas we want to avoid them, these works may be
useful to us because they provide very e�cient collision detection algorithms.

Combining spatial and joint constraints into collision free motion is a fun-
damental goal of robotics - motion planning - and a variety of exact and heuristic
solutions exist. The problem is that the complexity grows exponentially with
the number of degrees of freedom, making exact solutions e�ectively impossible
on a �gure with the articulation of a simulated human [6]. Much progress has
been made, however, in producing fast planners by considering schemes that are
not complete, i.e., may fail to �nd a path when one exists, or probabilistically
complete, i.e., �nd a solution in bounded time with high probability [4]. Koga
[20] has o�ered an incomplete planner to deal with �nding a collision free path
for grasping an object with articulated arms. However they assume that arms
are in such a con�guration that they cannot obstruct each other's path and
results are not provided at interactive speed.

In the �eld of inverse kinematics, some work is more similar to ours. They
deal with achieving collision avoidance while articulated �gures - virtual humans
- are reaching a goal [21], [11]. Because of the nature of the inverse kinemat-



ics algorithm, sensors are used for the collision detection. Response vectors are
calculated and integrated into the inverse kinematics equation system. There
are fundamental di�erences between this approach and ours. At �rst, inverse
kinematics has as a goal to bring a particular end-e�ector to a particular place,
whereas in keyframing all limbs must match the keyframe provided. Secondly,
the algorithms proposed are progressive: each time a collision is detected, an
intermediate goal is created. The motion goes from intermediate goals to inter-
mediate goals, which does not ensure a coherent or realistic motion. Finally the
way collisions are detected cannot assure a self-collision free path in any case.

3 Principle

In this research an articulated body is de�ned as a hierarchy of rotational joints
each of them having up to three degrees of freedom and being limited to pro-
duce only believable postures. Keyframes can be either created by an animator
or selected from previous motions. Once keyframes have been speci�ed, inter-
polations are achieved to produce the animation. The task we deal with is to
o�er an interpolation algorithm which generates self-collision free motions.

We want the interpolated motions to be produced at interactive speed.
In this way it could be used either as an interactive tool allowing an anima-
tor modifying some frames, if the suggested interpolation does not �t exactly
their expectations, or as an automatic generator of self-collision free motion in
virtual reality applications. For these purposes, we propose an incomplete algo-
rithm based on geometrical properties. It generates automatically some of the
keyframes that the animator previously had to add manually, this with a speed
which would globally reduce the time the animator has to spend producing a
self-collision free animation.

Input: K0,K1, keyframes speci�ed at the time steps T0, T1
Algorithm:

CheckAndCorrect( (K0; T0); (K1; T1) )
f

Interpolate between K0 and K1

Get for each time step between T0 and T1 the list of self-collisions
If(self-collision)

Select the �rst collision to be corrected (TCollision; ColType)
Move the limbs at TCollision in order to correct the collision
Create a sub-keyframe (KCollision; TCollision)
CheckAndCorrect( (K0; T0); (KCollision; TCollision) )
CheckAndCorrect( (KCollision; TCollision); (K1; T1) )

g

Fig. 1. Production of a self-collision free motion between two keyframes

The principle of our scheme is to compute a �rst interpolation using any classical
inbetweening method. Then, self-collisions are detected and sorted. At some
collision times, frames are modi�ed automatically to generate self-collision free
sub-keyframes using geometric properties. Finally, these sub-keyframes are used
for a new classical interpolation. This process continues until a self-collision free



interpolation is obtained (see algorithm Fig. 1).
This algorithm does not make any hypothesis about the kind of objects

which compose the articulated �gure, only a rigid skeleton is needed. So what-
ever the way the �gure is de�ned, if an associated collision detection algorithm is
available our scheme can be used to generate animations without self-collisions.

4 Implementation

In order to apply the principle described, we de�ne the way of ordering the
tasks of intersection correction in order to create sub-keyframes at relevant time
steps. Then we explain the process by which intersections are corrected at a
given time. Finally we give a detailed example of how our algorithm works on a
basic interpolation case.

4.1 Production of a sub-keyframe

In order to correct intersections, we use the concept of member. A member is
de�ned as a list of consecutive limbs starting from the centre of a �gure and
�nishing at a limb that does not have any children. For example, the limbs of a
humanoid are divided in 5 members: from the waist to each foot, from the waist
to each hand and from the waist to the head. The trunk is then shared by 3
di�erent members.

Once the �rst interpolation round has been performed between two key-
frames, collisions between limbs are detected. They are grouped: for each pair of
intersecting limbs, the members involved and intersection period are computed.
The �rst intersection to correct has to be chosen, it has to be a dominant in-
tersection whose correction suppresses a large number of collisions. Practically,
all the intersection periods are scanned and the longest one is selected. The
frame whose time index is at the centre of the period is the �rst frame to be
corrected. The member that has to be moved to correct it has to be selected. If
two members are involved in the intersection, the member that has moved the
most between the previous and the next frame is chosen, since a large movement
allows more freedom for correcting an intersection.

To move this member e�ciently, we need to know which of its limbs should
be moved �rst for the correction - starting limb -, and which part of the member
should stay immobile - �xed limbs -, because its motion would not have any
e�ect on the correction of the intersection. If the self-collision involves only one
member the part between the waist and the �rst limb intersected should be �xed.
Otherwise, the list of �xed limbs is composed of the limbs between the waist and
the last common limb. In both cases the limb involved in the collision that is
the closest to the extremity of the member should be moved �rst. In fact the
motion of any limb between this chosen limb and the �rst not �xed limb may
correct the collision, moreover this choice has been made in order to try �rst the
motion of the limb which would change the position of the member the least.

Before changing the position of the member we look for any related in-
tersections at the same time in order to correct them during the same step. If



there are other intersections with the selected member, starting limbs and �xed
limbs are calculated for each of these intersections. Then the new starting limb
and the new list of �xed limbs are computed: the new starting limb is the start-
ing limb which is the closest to the waist and the new list of �xed limbs is the
shortest of the computed lists.

Once the member is selected and the starting and �xed limbs are known,
the computation of a new pose of the member can start. The process begins
with the motion of the starting limb. New positions for the end of the limb are
computed (see Section 4.2). For each of these new values, the limb is moved and
intersections between the limb and others are detected. As soon as a position is
valid - no intersection is detected -, the next step of the process is to search for
a valid position for the next child limb of the member. When the last limb of
the member has been validated the member is collision free and the associated
sub-keyframe is produced. An outline of the algorithm is given Fig. 2.

Input: start, index of the starting limb
�xed, highest index in the list of �xed limbs

Output: Boolean (successful or failed)
Initialise: member, member to be moved
Algorithm:

Move(�xed, start)
f

limb = member.GetLimb(start)
limb!GetPositions()
OrderPositions()
For each position

limb!MoveToPosition()
If(limb!DoesNotIntersect())

for(i =start+1 to member.GetNbLimbs())
limb2 = member.GetLimb(i)
If(limb2!DoesIntersect())

If(Move(start, i)==FAILED)
Break

if(i==member.GetNbLimbs())
return SUCCESSFUL

start��
limb!MoveBackToStartingPosition()
if(start==�xed)

return FAILED
else

return Move(�xed,start)
g

Fig. 2. Production of a collision free position for a member

However, if at any step no valid position may be found, new positions are com-
puted for the parent limb, which becomes the starting limb. If the new starting
limb belongs to the list of �xed limbs, no move can be performed. In this case
the process has �nished and has failed. No sub-keyframe is produced.

Once the sub-keyframe has been produced, the whole �gure is checked
for self-collisions again. If there are remaining intersections - between other
members -, they are sorted and the new intersection to be corrected is chosen.
Then the sub-keyframe is modi�ed accordingly to the process described above.



4.2 Production of new positions

In order to produce collision free sub-keyframes, limbs are moved to new po-
sitions. The realism of the interpolation produced depends on the generation
of these positions. At �rst we assume that the interpolation algorithm or the
animation package used by the animator has been carefully chosen to provide
motions suitable for their purpose. Hence the collision free motion generated
should keep most of the properties of the motion interpolated by the chosen
algorithm. In order to do this, any newly generated position of a limb should be
closely related to the previously interpolated curve.

Secondly, the keyframe positions cannot be modi�ed. They are absolute
constraints provided by the animator to express the motion they expect. When
limbs intersect obstacles during their motions, these obstacles have to be passed,
the limbs cannot stay on one of their sides.

A limb may be de�ned by two positions: the beginning of the limb, B,
which does not move and the end of the limb, E, which should be moved to
correct a detected collision. In order to keep the new suggested positions of
the limb connected with the previously computed interpolation curve, these new
positions depend on positions of the interpolation curve. Actually, they are
obtained using the position of the limb at the time step at which it has to be
corrected, (B;E), the position of the limb at the previous time step, (B0; E0),
and the position of the limb at the next time step, (B1; E1), see Fig. 3.

E1

E0

B1

E

P

Interpolation splines

Limb
B0 B

n

Fig. 3. New positions generated by the plane P (here an ellipse)

Because we want the obstacle to be passed, we assert the constraint that the
new position should be in the space between the planes, P0(

���!
E0E1; E0) and

P1(
���!
E0E1; E1), perpendicular to

���!
E0E1 and passing through E0 and E1 respec-

tively. Practically, we build a �rst plane perpendicular to
���!
E0E1 and passing

through E, P (
���!
E0E1; E) and then build other parallel planes between E1 and

E0. The �gure has a rigid skeleton and hence the distance between the begin-
ning of the limb, B, and the end, E, is constant, moreover the beginning is �xed,
so the positions should belong to the sphere S(B;

��!
BE).

The space of new positions is the intersection between these planes and
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Table 1. Position of limbs during the interpolation process

this sphere: a set of ellipses, circles or points. A sampling of this space is then
made and these positions are sorted to o�er �rst positions that will provide the
most realistic motion. In order to do this sorting, weights are assigned to each
position according to parameters relevant to the expected animation such as
degrees of freedom, comfort [12], distance to the interpolated position, E, or
probability of belonging to a path de�ned by physiological models [20].

4.3 Detailed example

Here we study in detail the results provided by our algorithm during the produc-
tion of a self-collision free path between two keyframes. The articulated �gure
used to evaluate our system is a humanoid composed of 19 limbs and 15 joints.
All interpolations are made using a classical cubic spline scheme. The production
of poses of our articulated �gure can be achieved in real-time by three di�erent
ways: forward kinematics, inverse kinematics and interactive genetic algorithms.
The time spent for building a pose has been evaluated for these techniques [9]:
a trained animator needs between 30 and 60 seconds to produce a given pose



Interpolation between steps 0 & 9 Interpolation between steps 4 & 9

Time step Intersections Time step Intersections

3 R. forearm R. hip 5 R. forearm R. thigh

R. forearm R. thigh R. hand R. thigh

4 R. forearm R. hip 6 R. forearm R. thigh

R. forearm R. thigh R. hand R. thigh

R. hand R. thigh 7 R. forearm R. thigh

5 R. forearm R. hip

R. forearm R. thigh

R. hand R. thigh

6 R. forearm R. thigh

Table 2. Self-collisions detected during interpolations

whatever the method.
We start by interpolating between the two keyframes de�ned at the time

steps 0 and 9. As expected, the result is everything but realistic (see Table 1.a).
Actually 9 collisions are detected (see Table 2). Dominant collisions appear to
be at time step 4. The starting limb is the right forearm and only the waist
is a �xed limb. The motion of the right forearm does not provide any valid
positions, so the correction of the collisions starts by the motion of the right
upper-arm and then the right forearm is moved (see Table 1.b). The right hand
keeps its previous position because its position is collision free. Eventually a
new sub-keyframe is created at time step 4.

New interpolations are made between the new sub-keyframe and each key-
frame. Between time steps 0 and 4 no collision occurs, but between time steps
4 and 9, 5 collisions are detected (see Table 2). Self-collisions are corrected at
time step 6 by the motion of the right forearm (see Table 1.b), which was the
starting limb whereas the waist was �xed. A new sub-keyframe is created.

Finally, interpolations between time steps 4 and 6 and between time steps
6 and 9 are made. No collision can be detected. The animation is now collision
free (see Table 1.c), only 13 seconds were needed for its generation.

5 Results and discussion

We tested our algorithm using an articulated �gure whose skeleton is described
in Section 4.3 using a 300 MHz Ultra2 processor of a Sparc 450 workstation.

One of our aims is to free animators from interpolation considerations
and to let them to concentrate on what really matters: the creation process.
We do not want them to focus on avoiding collisions between the limbs of their
articulated �gure by adding irrelevant keyframes from the point of view of the
creation, which appear to be necessary for realistic interpolation. In order to
present a practical example of the use of our method, we used a set of positions
provided in a yoga book [1] which is supposed to demonstrate how to reach
the lotus posture. These positions have been used as keyframes to produce the
animation of a character moving from a position where it is knelt to the lotus
posture (see Appendix). This animation of 17 frames is based on 5 keyframes.



Because of the nature of this yoga posture, 25 self-collisions have been
detected after using a classical interpolation algorithm. An animator would
have a very di�cult task adding all the keyframes that would have been needed
for a self-collision free motion. On the other hand, our algorithm produced
automatically in 43 seconds a collision free motion creating 4 sub-keyframes.

The animator can then judge the result. They may decide to keep the
motion generated (see Appendix) or to modify some of the frames produced.
In both cases our algorithm eases the task of the animator and is time saving,
considering that the time needed by a trained animator for building these 4 poses
would have been at least 120 seconds [9].

Previous results [14] have shown the interpolations between two keyframes
are produced at interactive speed for the generation of up to 20 frames. In spite
of the di�erent qualities of animation which have been obtained, our method
has a positive impact globally. The speed-up for getting a collision free motion
is between 3 to 20 if no modi�cations are needed, or between 1.3 and 2.8 if only
minor corrections are needed. If the algorithm is unable to build a collision
free motion, this result is given almost instantly (speed-up down to 0.8) and
information about the self-collisions detected is provided. Knowing this, the
animator can then add some new keyframes at speci�c times.

Actually our algorithm appears to be a useful tool for keyframe animation
when an animator is involved. Interactively, the animator can decide if the
o�ered interpolation should be kept, modi�ed or if more keyframes should be
provided. This algorithm spares a lot of time for the animator, eases their task
and allows them to focus more on the creation process.

Finally another advantage of our method is its generality. Any kind of
classical interpolation scheme can be used. It may be used with articulated
�gures having rigid or deformable objects around a rigid skeleton, and may also
be used also to avoid collisions with the environment.

6 Conclusion and future work

We presented a new algorithm for keyframe interpolation whose aim is to gener-
ate self-collision free animations. Based on geometrical properties, it is general
considering that any kind of low level interpolation scheme may be used and
it can deal with articulated �gures composed of rigid and deformable objects.
Experimental results using a human model show that with our algorithm, the
animator can generally reduce the level of detail needed for describing a move-
ment and still get realistic motions at interactive speed. It appears it is time
saving and provides a real help assisting animators in the task of producing real-
istic animations. We think it could also be used for the automatic generation of
animations for virtual reality applications, where the guarantee of collision free
motions does not need to be absolute. In order to improve the quality of the an-
imation produced, we are currently working on metrics which would express the
quality of the interpolated motion and on other ways of selecting the best posi-
tion among the positions produced. We will also implement some optimisations
in order to provide results at near real-time.
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