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Abstract—   Genomic Signal Processing is a new area of research that combines 

advanced digital signal processing methodologies for enhanced genetic data analysis. 

It has many promising applications in bioinformatics and next generation of healthcare 

systems, in particular, in the field of microarray data clustering. In this paper we 

present a comparative performance analysis of enhanced digital spectral analysis 

methods for robust clustering of gene expression across multiple microarray data 

samples. Three digital signal processing methods: linear predictive coding, wavelet 

decomposition and fractal dimension are studied to provide a comparative evaluation 

of the clustering performance of these methods on several microarray datasets. The 

results of this study show that the fractal approach provides the best clustering 

accuracy compared to other digital signal processing and well known statistical 

methods. 
 

Index Terms—Microarray clustering, Discrete wavelet, Linear predictive coding, Vector 

quantisation, Fractal dimension, Genomic signal processing 

 
 

1. Introduction: 

In recent years, microarray data analysis has provided better insight on understanding and linkage 

of genetic disorders in diseases such as diabetes, cardiovascular diseases and some forms of 

cancer[1]. This process relies mainly on robust clustering, which aims at assigning observations 

defined in a high dimensional feature space, i.e. gene expression levels, into subsets sharing similar 

properties[2].  

Genomic signal processing (GSP) is a new area of research that applies and develops advanced 

digital signal processing methodologies for genetic data processing and visualization [3]. In this 
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work, we are particularly interested in ‘GSP clustering’, i.e. clustering methods based on Digital 

Signal Processing (DSP) approaches applied to genomic signals. In recent years several clustering 

methods based on spectral analysis have been introduced for gene expression profiling [4, 5]. An 

autoregressive technique was proposed in [4] to evaluate the potential regulatory relationship 

between genes with dominant spectral components. Other methods presented the decomposition of 

expression profiles into spectral components to correlate profiles was shown to allow obtaining 

high accuracy expression values [6]. However, to-date no study has been reported on the 

comparative evaluation of the clustering performance of different methods designed for Digital 

Signal Processing against standard microarray clustering algorithms. In this paper we present such a 

detailed comparative analysis and select the best performance on different standard data sets. In 

particular we present the performance of Linear Predictive Coding (LPC), Discrete Wavelet 

Decomposition (DWD) and Fractal Dimension (FD), and compare the clustering performance of 

these applied on number of microarray datasets with standard clustering methods.  

The structure of this paper is as follows. Within the context of microarray data analysis, section 

(2) reviews, first, conventional clustering methods and, secondly, techniques based on Digital 

Signal Processing approaches. Section (3) presents the general framework of GSP clustering. In 

section (4) the details of clustering methods (LPC, DWD or FD) combined with vector quantisation 

and cluster quality measures are introduced. In section (5), the comparative results are presented. 

Finally, the paper concludes with ongoing and future work in this area. 

 

2. Related work 

2.1- Microarray Clustering and Classification Methods 

Although classification and clustering are different machine learning tasks, that depend, 

respectively, on supervised and unsupervised learning methods, both are relevant to the analysis of 

microarray data. In recent years many of these methods have been proposed to compare gene 

expression levels in samples drawn, in general, from two different conditions [7-26]. Table (1) 

shows a comprehensive summary of existing microarray clustering and classification methods. A 

brief description of these methods is presented here for completeness. Earlier techniques are based 

on statistical, deterministic, probabilistic and computational methods producing either distance or 

similarity measures to achieve dimensionality reduction. Earlier work of Golub et al. [7] used a 

statistical method, i.e. T-test measure. The method measured correlation that emphasizes the signal-
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to-noise ratio by using a gene as a predictor that reflects the difference between the classes relative 

to the standard deviation within the classes. Large values indicate a strong correlation between the 

gene expression and the class distinction. The original method used one way clustering only, either 

for genes or samples, and was sensitive to the number of genes. Since two-way clustering methods 

are more powerful when dealing with highly dimensional data, Alon developed such a method 

based on a deterministic annealing algorithm [8], where a square-root barrier function was derived. 

It approximates a solution of the max-bisection problem allowing separation of a set of genes into 

two groups which leads to the arrangement of all genes in a binary tree. In order to improve 

standard annealing which relies on thresholds, another two-way clustering method was proposed 

using fuzzy C-means and entropy-based clustering [9]. Experiments showed misclassification errors 

depend on the number of iteration levels. Improved accuracy was achieved using a Biclustering 

algorithm [10] to identify local structures from gene expression dataset based on Singular Value 

Decomposition (SVD). The main limitation of all these methods is their dependence on the correct 

choice of the threshold level parameter that is used in the clustering estimation. 

Another line of research investigated the use of Support Vector Machine (SVM) based clustering 

to microarray data, where the construction of an N-dimensional hyper plane allows the separation 

of data into two categories. The strength of SVM is it supports both regression and classification 

tasks and can handle multiple continuous and categorical variables. Furrey et al. [11] proposed an 

implementation of SVM applied to microarray data clustering where a kernel is initiated, starting 

with simple dot-product kernel, and then its diagonal factor is tuned using top ranked features to 

achieve the best performance. Iizuka et al. [12] introduced a Fisher’s Linear Classifier to 

microarray analysis. They showed that this statistical method based on a linear combination that 

maximizes the ratio of samples between the class variances and the within class variance performs 

more accurately than SVM based systems. In order to improve these SVM schemes, a heuristic 

method was introduced for non-parametric clustering where SVM classifiers define support vectors 

describing portions of clusters and a model selection criterion is used to join these portions [13]. 

Hybrid models were also proposed to enhance accuracy of SVM based systems. SVM was 

combined with a Genetic Algorithm (GA) to select predictive genes [14]. An extension of that 

scheme integrated a specialized Size-Oriented Common Feature Crossover Operator in the GA to 

keep useful informative blocks and produce offsprings which have the same distribution as their 

parents [15]. Another hybrid model used metaheuristics consisting of a Particle Swarm 

Optimization to refine the SVM based approach [15].   



 

4 
 

 

 
Table (1): Summary of existing microarray clustering and classification studies 

 
Techniques Study Datasets Generation procedure Group 

T-test 
Golub, 
1999[7] 

Leukaemia 
T-statistics for gene selection 
Weighting voting for classification 

F
ilt

er
in

g Two-way 
Alone, 
1999[8] 

Colon 
Correlation for gene selection 
Deterministic annealing algorithm for clustering 

Two-way 
Chandra, 
2006[9] 

Leukaemia, and 
Colon 

Preprocessing using entropy and correlation measure 
Clustering based on  fuzzy C-means 

Biclustering, 
SVD 

Yang,   
2009[10] 

Human Tissues, 
Lymphoma, and 
Leukemia 

Preprocessing using statistics for gene selection 
Clustering based on Singular Value Decomposition 

FLC, SVM 
Iizuka, 
2003[12] 

Hepatocellular 
Classification using either Fisher Linear Classifier or Support Vector 
Machine 

S
ta

tis
tic

al
 L

e
ar

n
in

g
 GA/SVM 

Huerta, 
2006[14] 

Leukaemia, and 
Colon 

Preprocessing using Genetic Algorithm 
Classification using Support Vector Machine 

PSO/GA-
SVM 

Jourdan, 
2007[15] 

Leukemia, 
Breast, Colon, 
Ovarian,Prostate 

Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA) 
(both augmented with Support Vector Machines SVM) 

kNN 
Singh,  
2002[16] 

Prostate K-Nearest Neighbour clustering 

kNN 
Nutt,     
2003[17] 

Gliomas K-Nearest Neighbour clustering 

PLSLD 
Nguyen, 
2002[23] 

Leukaemia, and 
Colon 

Dimension reduction using Partial Least Square,Classification using 
Logistic Discrimination and quadratic discriminant analysis 

PLSLD 
Fort,  
2005[24] 

Leukemia, Colon 
and Prostate. 

Combining partial least squares (PLS) and Ridge penalized logistic 
regression. 

SVM 
Furey, 
2000[11] 

Leukaemia, and 
Colon 

Classification using Support Vector Machine 

S
ta

tis
tic

al
 L

ea
rn

in
g

 
em

b
ed

d
ed

 w
ith

 
F

e
at

u
re

 S
el

e
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FJC 
Jong, 
2003[13] 

Leukaemia, and 
Colon 

Preprocessing using support vector classifiers 
Clustering using Find and Join Clusters method. 

PAM 
Tibshirani
, 2002[19] 

Leukaemia 
Class prediction using Prediction Analysis of Microarrays - 
statistical technique using nearest shrunken centroid 

MARS, LGP, 
CART,RF 

Mukamala
, 2005[22] 

Leukaemia, 
Prostate and 
Colon 

Classification using either Linear Genetic Programs or Multivariate 
Regression Splines or Classification & Regression Tress or random 
forest 

KPCA 
Liu, 
2005[20] 

Leukaemia, and 
Colon 

Dimension reduction using Kernel Principal Component Analysis 
Classification with logistic regression (discrimination). 

F
ea

tu
re

 S
el

ec
tio

n
 

P-ICR 
Huang, 
2006[21] 

Leukaemia, 
Colon, Glioma, 
Hepatocellular 

Regularizing gene expression data using Independent Component 
analysis Classification using Penalized discriminant method 

MRMR 
Ding, 
2004[25] 

Leukaemia, and 
Colon 

Minimum redundancy - maximum relevance (MRMR) feature 
selection 

MRMR-GA 
El Akadi, 
2009[26] 

Leukaemia, and 
Colon 

MRMR and Genetic algorithm 

FMG-K-
mean 

DeSouto, 
2008[18] 

Leukaemia, and 
Gliomas 

finite mixture of Gaussians, followed closely by k-means, Probabilistic 

 

Although SVM has been successfully applied, it requires more training than the statistical and 

linear discriminant analysis; moreover the classification of data in more than two classes is difficult. 

In order to address this, distance-based clustering methods such as K-Nearest Neighbour clustering 

KNN [16, 17] have been used to select set of gene expression profiles. This simple approach 

assigns each point in data space to its nearest neighbour which forms clusters if distances are 

sufficiently small. However, this iterative process lacks robustness since it is very sensitive to the 

chosen number of neighbours. To tackle this weakness and the nonlinearity of the data, Nearest 
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Shrunken Centroid was successfully proposed for unsupervised gene clustering [19]. This method 

relies on using denoised versions of the centroids as prototypes for each class. However, due to the 

unstructured nature of gene data, their algorithm may fall into Local minimums which produce 

different partitions depending on initialization. Since k-means tend to cluster data within spherical 

regions of the Euclidean space, better clustering can be achieved using a Finite mixture of 

Gaussians (FMG-K), which is a curved summation of k multivariate Gaussian density functions or 

Gaussian components [18]. In a mixture model, each component in the mixture is assumed to model 

a group of samples. Based on density functions that produce mixing coefficients, one obtains the 

probabilities of a sample belonging to each cluster. Generally clustering approaches based on 

distance measures are ineffective to estimate multivariate functions in high dimensionality data. 

This can be addressed using dimension reduction as a preprocessing step within the cluster analysis 

pipeline so that not only high-dimensional data become manageable and computational cost is 

reduced, but also this provides users with possible visual examination of the data of interest. 

However, dimensionality reduction methods inevitably cause some loss of information which may 

damage the interpretability of the results. Principle component analysis (PCA) is one of the typical 

approaches that construct a linear combination of a set of vectors that can best describe the variance 

of data. Kernel Principle Component Analysis (KPCA) is an extension of PCA performing a 

nonlinear transformation using integral operator kernel functions [20]. Both processes view the 

profile vector as a point in this multi-dimensional space and use second-order statistical information 

of the data. However, since much of the microarray information may be contained in the high-order 

relationships between samples, these second-order methods are not ideal. Independent Component 

Analysis (ICA) has potential advantages over PCA [21] to overcome its limitations. ICA uses high-

order statistics, not just the covariance matrix as PCA does, which is more suitable for the 

complexity of gene expression data. Moreover, it can handle a higher level of noise. The main 

drawback is that ICA ignores some of the spatial and temporal structure contained in the data. 

In [22], authors applied t-test to extract different dimensional genes, then applied Multivariate 

Adaptive Regression Splines (MARS), Classification and Regression Tress (CART), Random 

Forests (RF) and Linear Genetic Programs (LGP) to classify microarray data. MARS is a 

nonparametric regression procedure that makes no assumption about the underlying functional 

relationship between the dependent and independent variables. Instead, MARS constructs this 

relation from a set of coefficients and basis functions that are entirely “driven” from the data. The 

method is based on the “divide and conquer” strategy, which partitions the input space into regions, 

each with its own regression equation. This makes MARS particularly suitable for problems with 
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higher input dimensions. CART was built to predict continuous dependent variables (regression) 

and categorical predictor variables (classification). A Random Forest is a classifier consisting of a 

collection of tree structured classifiers with independent identically distributed random vectors, 

where each tree casts a unit vote for the most popular class of input. Linear Genetic Programming is 

a variant of the genetic programming technique that acts on linear genomes. Comparative 

evaluation shows LGP achieved consistently better results than other methods. However, the 

underlying problem of this iterative method is that it becomes computationally expensive when 

dealing with highly dimensional feature vectors.  

Another analysis procedure combined dimension reduction using Partial Least Squares (PLS) and 

classification using either Logistic Discrimination (LD) or Quadratic Discriminant Analysis (QDA) 

based on the classical multivariate normal model for each class [23]. Experiments show that LDA 

yields better classification performances than QDA. Although PLS proves more appropriate than 

PCA for gene feature extraction, it has limitations. First, it is designed to handle continuous 

responses while the variance of the error in the models differs across gene expression observations. 

Secondly, this algorithm does not always converge. In order to deal with this, the PLS method was 

extended to binary response variables to be able to handle the high-dimensional gene expression 

space [24]. However, this limits its usage to two-class problems. Moreover, experiments show its 

performance is very sensitive to the choice of iteration and regression parameters.  

As a preliminary step in the clustering process, features can be selected using the maximum 

relevance/minimum redundancy (MRMR) algorithm, which is based on solid multivariate filter 

procedures [25]. This method addresses data redundancies by selecting genes which have high 

mutual information (maximum relevance) and simultaneously are mutually maximally independent 

(minimum redundancy). This process can be further improved with the help of genetic algorithm 

combined with multi-class SVM. A new fitness function for MRMR-GA with GA-SVM [26] was 

proposed which always selects the smallest set of genes that provides maximum accuracy. 

Most classification and clustering methods require a predefined gene sample similarity or 

distance metric which has a major impact on their performance depending on how that metric 

reflects the real relationship among samples. Generally, data-dependent metrics are used; they 

include Euclidean distance, Manhattan distance and Pearson-correlation. However, in practice, it is 

desirable to use an adaptive scheme which can estimate the best metric according to input data, i.e. 

the local features of the gene sample data in this study. In order to address this important challenge, 

new approaches based on digital signal processing methods have been recently proposed. The next 

section will introduce such methods and examples. 
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2.2- Clustering Methods based on Digital Signal Processing methods 

To overcome the clustering disadvantage of the standard approaches, several methods based on 

DSP principles have been proposed for the clustering of genomics data in recent years. In general 

these methods provide superior characteristics compared to the traditional methods outlined earlier. 

The gene expression samples can be seen as a signal profile that involves some episodic waveform 

transitions within time samples. Processing gene expression as time series produces ranges of 

frequencies that allow finding targets that are expressed periodically with specific correlations 

between both genes and samples. These characteristics can be analysed further in the frequency 

domain using different methods designed for processing digital signals to predict and identify 

samples pattern using techniques such as autocorrelation, trend analysis and autoregressive models. 

In addition, highly dimensional data, which are a combination of observed and latent variables, 

could be modelled for marginal inference under multi-biological conditions in a probabilistic 

system.  

The functional nonlinear relations between genes have motivated research in developing 

nonlinear DSP based techniques for modelling gene expression data samples. The fundamental DSP 

algorithms which were investigated for analysis of microarray clustering are linear predictive 

coding, wavelets and fractal dimension. In all cases, the main objective has been to represent a gene 

expression signal with a set of predictive coefficients which could be processed by spectral 

clustering using measures such as spectral difference and spectral distortion [2].   

Method based on wavelet transform was introduced for identification of microarray features and 

exploration of their relationship with phenotypic outcomes [27]. This approach allows decomposing 

a gene signal into components of different length scales, providing a convenient basis for exploring 

gene behaviour and their clustering according to their expression signal. A hybrid analysis method 

combining wavelet and GA was proposed to find significant genes [28]. Multilevel wavelet 

decomposition was performed to reduce the dimensionality of microarray features by breaking gene 

profiles into approximation and detail coefficients. Approximation coefficients were reconstructed 

to build the approximation, whereas the genetic algorithm selected the optimal features from 

approximation coefficients. Experiments, where 15 GAs at 2nd level of wavelet decomposition were 

used, showed the method achieved more accurate results than statistical methods. A comparative 

study of multidimensional dataset clustering methods showed that, not only, the Wavelet method is 

more computationally efficient and accurate than statistical methods, i.e. classical K-means and 

hierarchical clustering, but it is more sensitive to detect sudden changes in input data [29]. 
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A systematic determination of cluster boundaries using the ratio of within-class and between-

class variances was introduced in [30]. Moreover, in order to reduce the noise content in the 

expression data, discrete wavelet transform with a threshold value was used before the clustering 

procedure. They tested three different types of mother wavelet functions, i.e. Daubechies, Haar and 

Symlet, and showed that Daubechies wavelets are the most accurate.  Moreover, they discovered 

that data enhancement by wavelet transforms yielded better results for time series data which have 

periodicity. The multi-resolution property of wavelet transforms also inspired researchers to 

consider algorithms that could identify clusters at different scales [31]. This was applied recently to 

microarray data analysis where feature extraction was based on multilevel wavelet 

decomposition[32]. 

Fractals analysis is an effective and relatively recent scientific paradigm that has been used 

successfully in many areas including biomedical and biological sciences. In particular, it has been 

recognised as a useful method in quantifying the complexity of dynamical data and signals [33]. 

The fractal concepts of self-similarity and scaling invariance have been applied to many biological 

systems, from branching patterns of bronchial and circulatory vessels, to cardiac rhythms, to the 

geometry of shells and trees [34]. Applications also include genomics where multifractal spectrum 

analysis was performed on DNA sequences [35]. 

The determination of fractal dimension (FD) can be used for the characterisation of microarray 

datasets to measure the similarity of gene expression samples. It can be considered as a relative 

measure of the number of basic building blocks that form a gene sample pattern. Applications of 

FD in biomedical and signal processing include two types of approaches: (i) time domain where the 

original signal is considered as geometric and (ii) phase space domain which estimates the FD in 

state-space domain [36]. Clustering using FD is a type of grid-based clustering, where the data 

space is divided in cells by a grid. Some of the well-known techniques that use grid-based 

clustering are STING [37], WaveCluster [31] and Hierarchical grid clustering [38]. Generally, the 

effects of these techniques are influenced by the size of the predefined grid and the threshold of the 

significant cells. Moreover, the technique cannot be scaled to high dimensional datasets due to the 

computational complexity in number of cells. This was addressed in [39] where they proposed a 

technique of adaptive grids in subspace whose determination was based on data structure and 

distribution. 

From these studies, it can be noted that although several methods designed for processing digital 

signals has been used successfully for microarray clustering, no comparative analysis and detailed 

correlated study of their clustering performance with traditional statistical methods has been carried 
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out to-date. Furthermore, these studies have also been evaluated using two performance metrics the 

Davies-Bouldin and Silhouette width methods, widely used in clustering performance analysis 

studies. In this work we will focus on DSP based extraction methods namely; LPC, DWD and FD 

for microarray clustering using the same evaluation metrics.  

 

3. GSP Clustering Method principle 

The processing blocks of clustering methods based on DSP methods applied to microarray data 

are shown in Fig. (1). They are summarized in the following steps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 GSP analysis for microarray clustering 
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1) Pre-processing. Since gene expression data are high dimensional and contain short 

multivariate time series, the reduction of the dimensionality of the gene expression 

variables is required. This can be achieved by either statistically selecting the most 

expressed genes or specifying a number of genes in the profiles. 

2) Clustering algorithms. This refers to the selection of relevant algorithms to produce 

informative clusters. For GSP clustering, the approach is divided into two stages:  

i) Selection of feature extraction method: In this, a method based on DSP approach is 

selected to translate the signal into a representation relevant to the vector of 

expression profile and to find the best predictive coefficients for the microarray 

model. This step also determines the proximity measure relative to the similarity-

quantified measurement between two vectors of the coefficients measure  

ii)  Vector quantisation allows the clustering of the resultant coefficients of the 

transformed data model into the relevant class partitions. This step determines the 

distortion measure between vectors of coefficients to quantise into the closest group.  

3) Cluster validation. Since the clustering process requires no a priori knowledge, its output 

needs to be evaluated using specific criteria. Statistical comparative approaches are used 

in most applications to benchmark microarray data clustering methods.  

4) Interpretation and Results. This final step transforms the cluster validation into a 

meaningful biological interpretation of the GSP clustering process. 

 

4. GSP Clustering Method 

In this section we detail the three DSP based methods mentioned earlier. 

 

4.1- Linear predictive method  

In this approach, we tailor the LPC method for microarray data clustering. The gene expression 

data contain rich information based on a set of a finite number of expression sample values for a set 

of genes can be represented as (vd) where d is the dimension of the gene expression array. In 

considering these characteristics the following gene expression data vector and their relationship 

can be given by:  
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                                  (1) 

In the LPC method, a predictor is built to estimate the expression variation component as a model 

coefficient. This is performed by applying a speech analysis method on the microarray expression 

data. This tailored approach, called miLPC, builds on LPC which is a well known and a 

predominant method for estimating basic speech parameters and which can extract the spectral 

features of microarray data due to its ability to model multidimensional non linear data. LPC is a 

method for signal source modelling through observation of input and output sample sequences. The 

basic concept of LPC analysis is to estimate a functional set of component coefficients which 

describe the behaviour of a system where each expression sample is approximated as a combination 

of past samples [40]. A conceptual framework of the miLPC method is illustrated in Fig. (2) where 

inputs are represented by gene waveforms v(g,n). LPC coding generates a series of coefficient 

models that involves spectra of the original gene samples signal variation. The computation is based 

on the principle that the estimated value of a particular gene expression data in microarray at 

sample x, denoted as , can be predicted approximately by linear combination of the past p 

gene expressions data defined as: 

                                  (2) 

The prediction variation in expression value  is the difference between the original data 

expressions and the predicted as follows: 

                                   (3) 

The goal of the LPC analysis is to estimate the best prediction coefficients aj over n gene 

expression data samples and set the order p of the required predictor (usually n>>p), so that the 

predicted expression sample is a good approximation of the original expression sample. This 

optimization process used to calculate the predictor coefficients is based on minimizing the mean 

energy in the expression variation over n expression samples of the dataset by least-squares 

minimization method. This process leads to a system of p equations with p unknowns which are 

solved to find the best fitting predictor coefficients. 

There are a number of methods to solve those linear equations. The most common one is the 

covariance method which is an efficient linear prediction for spectral estimation techniques and is 

appropriate when estimating coefficients from a sample of a non stationary signal. The covariance 
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method windows the gene expression variation  instead of the individual gene expression 

sample . This prevents the introduction of distortion into the spectral estimation procedure.  

 

 

 

 

 

 

 

 

 

Figure 2 Conceptual framework of the miLPC method 

 

 

However, direct quantisation of the coefficients aj is not advisable because of their relatively large 

dynamic range and possible filter instability problem: small changes due to quantisation error could 

result in the internal digital filter pole becoming unstable and producing large spectral errors. Thus, 

other superior parametric representations have been formulated to replace the coefficients aj [41]. In 

this work we chose the Line Spectral Frequency (LSF) representation to produce Gene Expression 

Spectral Frequency (GESF) to capture the spectral expression of information sequence. Since LSF 

is independent of the characteristics of the source of the sequence, it has been shown to be a 

particularly efficient for quantisation of information [42]. Moreover, it does not distort the 

spectrum, varies smoothly across the sequence and offers a better coding in relation to spectral 

peaks. These GESF coefficients are used subsequently to determine distortion between samples. 

Fig. (3) describes the processing steps of the miLPC algorithm.  

The magnitude of the power spectrum depends on the spacing of the GESF parameters. Closely 

positioned parameters correspond to the peaks of the spectrum, while widely positioned ones 

correspond to the spectrum valleys. Since the power spectrum information is more important to the 

gene expression samples, finer quantisation of the GESF parameters in these regions is desired. 

This can be achieved by finer quantisation of closely positioned parameters. 
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Figure 3  miLPC algorithm 

 

 

4.2- DWD method 

In general, wavelets tend to be irregular, asymmetric and are capable of revealing aspects of data 

that other analysis techniques disregard. DWD is a method allowing the decomposition of a signal 

onto a set of basis functions and its analysis by transforming its input time domain into a time-

frequency domain. The main advantages of DWD are that it provides resolution optimality in both 

time and frequency domains, and it does not require a stationary signal [43]. In this work we tailor 

DWD for microarray gene expression data processing. The method, called miDWD, is  based on 

two major sub operations: scaling captures the gene profile information at different frequencies by 

successive low pass/ high pass filtering and down sampling, whilst translation captures information 

at different locations. The miDWD method decomposes expression data into several groups of 

coefficients which contain information regarding the sampled signal at different scales. Coarse 

scale coefficients represent gross and global features of the signal while fine scale coefficients 

contain local details. The higher is the number of correlated coefficients between the localized 

sections of two samples, the more similar the sections are. The wavelet detail coefficients at 

different levels disclose the fully statistical information contained in the gene expression vector’s 

derivatives.  

The goal of the miDWD method is to start from scale-oriented decomposition, and then to 

analyse the obtained signals on frequency subbands. Using these decomposition coefficients, 

microarray data clustering can be achieved by measuring similarities between datasets using the 

vector quantisation method in order to obtain precise discrimination between features of microarray 

samples and perform robust clustering. 

Input:   Predictor Coeff order p, Gene Expression data vg, x, 
   x: Size of Gene expression samples, g: Gene Number 

Output : Codeword vector 

Processing: 
1-Compute the gene expression predictive coefficients {ap} 

2-Compute Mean Square Error, MSE 

3-Translate coefficients {ap } to Gene Expression Spectral Frequency 
4-Drive codebook based on VQ method 

5-Explore using the codebook the sample label of the computing clustering of microarray 

End 
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The conceptual framework of the miDWD algorithm is shown in Fig. (4). The method starts by 

applying recursively two convolution functions, i.e. a low and high pass filters on the given data 

signal v(g,n). Each function produces an output stream that is half the length of the original input in a 

specific resolution level. As a result, two sets of coefficients are calculated: the cA(n) coefficients 

are generated by the low pass filter and the cD(n) coefficients are produced by the high pass filter. 

This representation provides information about microarray gene expression sample approximation 

coefficients and detail coefficients at different scales. Detail and approximation at level j are 

expressed respectively by Eq. (4) and Eq. (5) as follows:  

                                 (4) 

                                 (5) 

where h(2n-t) and g(2n-t) are the low-pass filters and high-pass filters. The coefficient vectors are 

produced by down sampling and are only half the signal length of the coefficient vector at the 

previous level. The processing steps of the miDWD algorithm are shown in Fig. (5).  

 

 

 

 

 

 

 

Figure 4 Conceptual framework of the miDWD method 

 

 

 

 

 

 

 

 

Figure 5  miDWD processing algorithm 

Input:   Level of DWD decomposition lv, Gene Expression data vg, x, 
   x: Size of Gene expression samples, g: Gene Number 
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1-Compute the gene expression miDWD coefficients { cA(lv), cD(lv) } 

2-Compute Mean Square Error, MSE 
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4-Explore using the codebook the sample label of the computing clustering of microarray 

End 
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4.3- Vector Quantisation for miLPC and miDWD methods 

The two methods described earlier miLPC and miDWD require Vector Quantisation (VQ) for their 

clustering process as explained in section 3. In the clustering application, VQ has two main 

advantages [44]. First, it allows capturing meaningful classes in the microarray gene expression 

data samples, represented by the centres of their samples, and second, it makes subsequent 

classification decisions more robust to the inherent noise of the gene data samples. The principle of 

VQ is to map P-dimensional input vectors x=[x1; … ; xp ]
T by a finite set of L code vectors called 

codebook : Y = {yi; 1≤ i ≤L}.  To design a codebook, the P-dimensional space is partitioned into L 

cells {Ci; 1 ≤ i ≤ L}, then the quantisation process assigns one code-vector yi to each x according to 

which cell, Ci, they belong to:  q(x)=yi;  if  x Є Ci. The average quantisation error between input 

source and their reproduction codeword is called the distortion of the vector quantiser. A major 

aspect of the design of a vector quantiser codebook is to find the best trade-off between distortion 

and rate. Once the number of quantisation levels is defined, the rate is set. Then the focus is on data 

quantisation as a means of removing noise from data. The centres of the groups of data 

corresponding to different quantisation levels should be selected so that distortion is minimized. 

In this work, we use a ‘nearest neighbour’ vector quantiser in the microarray data space, i.e. a 

vector z is represented as a vector of gene expression samples which is mapped to a code vector qm 

of expressions in microarray. Implementation of vector quantisation in clustering microarray gene 

expression samples is achieved as follows: 

 

1- Selecting the expression vector qm that is nearest to a vector z, as defined by  

                                  (6) 

where d is a suitable distortion measure. The gain-normalized log spectral distortion is used 

since it is widely accepted as a good quality measure of signals [45]. It evaluates the similarity 

of two auto-regressive envelopes of gene expression samples and produces a microarray code 

book.  

The distance df between consecutive GESF vectors can be calculated according to the 

following expression: 

   with   wj= P(lf j)                (7) 

where LFi and LFk are vectors of GESFs, lf ij  is the jth frequency of LFi and wj is the power 
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spectral distortion measure. Here, the gain-normalized log spectral distortion is used since it is 

a popular quality measure of coded speech spectra, which evaluates the similarity of two auto-

regressive envelopes. It is expressed in the frequency domain by the following equation: 

                         (8) 

where P(w) is the auto-regressive envelope that is defined as: 

                                 (9) 

2- Assigning the resultant microarray codebook Cq as cluster label to the data grouped in q. 

The design of codebooks is usually accomplished by an iterative algorithm called the Lloyd 

algorithm. This algorithm generates a set of representative vectors of the source data and 

optimizes the codebook using the distortion measure method as shown in Fig. (6). Finally, once 

the codebook has been defined, GESF coefficient vectors are extracted and compared to all 

codewords of C and mapped to a single codeword that represents the different genes mapped on 

the tested microarray data.  

 

 

 

 

 

 

 

Figure 6 VQ algorithm for the miLPC & miDWD methods 

 

4.4- Fractals Dimension method (FD) 

Since a microarray dataset can be represented with columns as attributes (features) and rows as 

different data objects. Within this framework, the embedding dimension E of a microarray dataset is 

the dimension of its address space which represents the number of attributes of the dataset, whilst 

the intrinsic dimension D is the dimension of the spatial object represented by the dataset, 

regardless of the space where it is embedded. By embedding the dataset in an E-dimensional grid 

whose cell sides are of size r, the frequency of data points falling into the i th cell can be calculated:  

Goal: to partition unlabeled samples into k clusters 
 
Processing: 

1- Set the centroid as ui at random for i=1,2,,…k 

2- Assign  )),((minarg),( i
i

m qzdqzd =  

3- Set ui to mean of {qi } 
4- Repeat from step 2 until convergence 

End 

Vq encoder 

Ci  {i=1,..L} 

Codebook 
Index 

Q(Xp) 

Yi  {i=1,..L} 

Xi  {i=1,..P} 

Codebook 

Size L 
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                                      (10) 

where r is the grid size, Cr,i is the number of objects in the ith cell under grid size r. Eq. (10) 

expresses the correlation fractal dimension which measures the probability that two points chosen at 

random are within a certain distance of each other. Changes in the correlation dimension mean 

changes in the distribution of points in the dataset. The use of correlation FD as the intrinsic 

dimension of a dataset allows identifying the correlated attributes and discarding those 

uncorrelated. We call clustering microarray data in a D-dimensional space using fractal dimension 

method miFD.  

miFD is based on the box-counting and correlation fractal dimension algorithms [45]. The basic 

concept can be illustrated as a composition of multi resolution levels describing, for a given object, 

structures having a self-similarity on varying scales of magnification. The method starts by 

partitioning the structure of the signal data space dimension into pieces of equal size in a grid of 

magnification factor size τ. Then, the number of pieces that contain information of the original 

signal is counted. The process is repeated by iterative partitioning. FD can be calculated by taking 

the limit of the quotient of the log of the change in object size divided by the log of the change in 

the measurement scale. Fig. (7) describes the processing steps of the miFD algorithm. 

 

 

 

 

 

 

 

 

 

Figure 7  miFD processing algorithm 

 

 

 

Input:   Gene Expression data vg, x and τ 
   x: Size of Gene expression samples, g: Gene Number, τ: magnification factor. 
Output : FD value 

Processing: 
1- Select the genes expression sample data and represent them as a signal. 

2- Estimate the range of signal space according to starting, ending, minimum and 
maximum values.  
3- Perform regularization of the sample signal into unit squares, τk, which form a 
mesh grid of dimension τ. 

4- Count the number of grid squares, Nτk, which intersect with the signal.  

5- Plot log Nτk vs –log and find the slope of the regression line. The slope 
represents the FD. 

End 
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5. Comparative performance analysis  

In this section we present the details of the comparative analysis of the GSP methods explained 

earlier. We first describe the microarray datasets and the performance metrics used in this study.  

 

5.1 Microarray datasets 

In this paper, we used five well known microarray datasets. These datasets are used universally in 

microarray data clustering research and considered as benchmark datasets for such studies.  

Table (2) shows a summary of each dataset and a brief description of their particular associated 

diseases. Each dataset has two subsets namely training and test sets. However, since the GSP 

methods do not depend on any form of training, we combined both sets to produce a unique test 

sets.  

 

5.2- Performance metrics 

The evaluation of spectral clustering depends on two validity indices based on statistical 

measures, i.e. Davies-Bouldin (DB) and Silhouette Width (SW). These have been widely used in 

earlier clustering studies [46]. DB is based on the maximization of the distances between clusters 

while minimizing the distances within a cluster itself. A DB-index is determined as a function of 

the ratio of the sum of the distances within a cluster to the distance between clusters: the smaller the 

DB- index, the greater the quality of the achieved clustering.  

 

Table (2): Summary of the tested microarray datasets 

Study 
Type of 

disease 

No. of 

genes 

Training set Test set Total no. 

of 

samples 

Goal 
Total Class1 Class2 Total Class1 Class2 

Golub, 

1999 [7] 
Leukaemia 7129 38 

11 

AML 

27 

ALL 
34 

14 

AML 

20 

ALL 
72 

47 ALL 

25 AML 

Alone, 

1999 [8] 
Colon cancer 2000 40 

14 

normal 

26 

tumor 
22 

8 

normal 

14 

tumor 
62 

40 tumor 

22 normal 

Iizuka, 

2003 [12] 

Hepatocellular  

carcinoma 
7129 33 

12 

sick 

21 

healthy 
27 

8 

sick 

19 

healthy 
60 

20 sick 

40 healthy 

Singh, 

2002 [16] 

Prostate 

cancer 
12600 102 

52 

tumor 

50 

normal 
34 

25 

tumor 

9 

normal 
136 

77 tumor 

59 normal 

Nutt, 

2003 [17] 
Gliomas 12625 21 

14 

glio 

7 

oligo 
29 

14 

glio 

15 

oligo 
50 

28 glio 

22 oligo 
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SW exploits inherent features of clusters to assess the validity of results and select the optimal 

partitioning of the data of interest. This method is based on cluster compactness (in terms of intra-

cluster variance) and density between clusters (in terms of inter-cluster density): a good cluster 

should display an intra density which is much higher than its inter density. To determine SW, firstly 

the SW of each sample (SWi) is calculated using Eq. (11). Then the average SW for each cluster is 

computed. Finally, the overall average SW for all samples is calculated: 

)}(),(max{

)()(

isdisc

isdisc
SWi

+=                                  (11) 

where sc(i) is the average distance between the sample i to other samples in the same cluster, sd(i) 

is the average distance between the sample i and other samples which belong to the nearest cluster. 

The average of Silhouette score for SWi class C across all genes reflects the overall quality of the 

clustering result as expressed by Eq. 12: 

∑

n

1=i
iSW 

n

1
=)c(ASW                                    (12) 

To measure the global goodness of clustering using the Silhouette index, two parameters are 

required to be calculated. They are the Silhouette Width range, which is between 1 and -1, and the 

Average Silhouette Width (ASW). If the value of the Average Silhouette Width is greater than 0.5 

it indicates that clusters achieved a reasonable partition of the data. However, if its value is lower 

than 0.2, it expresses that the data do not exhibit cluster structure. 

 

5.3  Results analysis and Discussion 

In order to validate the GSP methods described earlier, a MATLAB® simulation model was 

implemented. In all GSP methods, we followed the same designed signal processing procedures. 

First, after pooling together the training and test samples to generate the unique test set for each 

dataset, we applied the most common gene selection approach called gene ranking [7] to microarray 

data to select an appropriate number of genes. A univariate analysis approach was used to evaluate 

each gene individually with respect to a criterion that represents class discrimination ability. 

Procedures of gene selection are based on computed rank value of each gene according to its signal-

to-noise ratio. These selected expression data were then processed to predict microarray coefficients 

using either the miLPC, miDWD or miFD method. miLPC and miDWD based clustering were 

performed by vector quantisation method using two codewords which corresponds to the number of 
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classes in all the tested datasets. For miFD, clustering was carried out by the estimation of fractal 

dimension for each sample and then by finding cluster based correlation between these dimensions.  

We first provide a more detailed analysis of the three GSP methods for Leukaemia. Then, we 

present general performances obtained on all 5 datasets. Since each set was captured in very 

different contexts associated to specific medical conditions, they vary in terms of gene and sample 

sizes. Therefore, for each set, each GSP method had to automatically evaluate the parameters to 

achieve best performance in the clustering process. Values of these parameters are shown in table 3.  

miLPC algorithm iteratively calculates the LPC order p, which is the main influencing parameter, 

by minimising the Mean Square Error (MSE) between the original gene sample signal and the 

prediction signal. Fig. (8) shows the impact of the number of genes for a variety of orders on the 

between a signal and its prediction. Experimentally, it was found that a minimum MSE of 0.838 

provides accurate clustering analysis of the test Leukaemia dataset for g={75,125} genes using an 

order p={34,35}. Higher order selection would lead to an increased complexity of the analysis 

without providing better accuracy. 

 

 

 

 

 

 

 

 

Figure 8 miLPC analysis for different order (p) and selected genes of the Leukaemia dataset 

 

 

Fig. (9a) shows Voronoi clustering of the Leukaemia sample set using the miLPC method with 

p=34 and g=75: samples are plotted according to their distortion distances to the two classes. 

Fig.(9b) presents their associated silhouettes as defined in the previous section. Since the global 

silhouette index, ASW, is equal to 0.49, the formed clusters are likely to partition accurately the 

samples in the dataset. On a sample basis, silhouette width values are generally positive which 

suggests accurate clustering. However, Fig. (9b) shows one exception (sample 21) which displays a 

negative value and leads to conclude that its grouping is unreliable. Consequently, this sample 
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should not be associated with any of the clusters. Actually, class labels provided with the dataset 

reveals that all samples were clustered accurately by miLPC, even the one which was judged as 

unreliable. 

 

 

 

 

 

 

 

 

a                       b 

Figure 9 Voronoi clustering associated with silhouettes of Leukaemia dataset obtained by miLPC  

 

Experimental results concerning miDWD method for the Leukaemia dataset are of better quality 

since a very good predictive MSE of 0.95 can be obtained using g={100,125,150} genes when 

processed with a DWD filter of level 2. This leads to an ASW of 0.63 and the absence of any 

unreliable sample. Even better results are obtained using the miFD method. Since fractal property 

allows localised description of expression data, an excellent ASW of 0.91 is achieved using g=100 

genes. The performance of these GSP methods on the five datasets is summarized in Table 3.  

 

Table (3) comparative Performance of the GSP methods 

 mmiiLLPPCC  aapppprrooaacchh mmiiDDWWDD  aapppprrooaacchh mmiiFFDD  aapppprrooaacchh 

DDaattaasseettss   
SSaammpplleess  

nnoonn  
CClluusstteerreedd 

CClluusstteerriinngg  
aaccccuurraaccyy   

MMiinn  
nnoo..  ooff   
ggeenneess 

LLPPCC  
oorrddeerr 

PPrreeddiiccttiivvee  
eerrrroorr 

SSaammpplleess  
nnoonn  

CClluusstteerreedd 

CClluusstteerriinngg  
aaccccuurraaccyy 

MMiinn  
nnoo..  ooff  
ggeenneess 

DDWWDD  
lleevveell 

PPrreeddiiccttiivvee  
eerrrroorr 

SSaammpplleess  
nnoonn  

CClluusstteerreedd 

CClluusstteerriinngg  
aaccccuurraaccyy   

MMiinn  
nnoo..  ooff   
ggeenneess 

FFDD   

LLeeuukkeemmiiaa  

[[77]] 
00 110000%% 7755 3344 00..883388 00 110000%% 110000 22 00..995566 00 110000%% 110000 00..8877 

CCoolloonn  

[[88]] 
33 9955%% 110000 3322 22..9977 22 9977%% 2255 33 33..77 11 9988%% 7755 00..5555 

HHeeppaattoo--
cceell lluullaarr  

[[1122]] 
1144 7766%% 112255 2299 00..552288 77 9900%% 5500 88 44..22 55 9922%% 110000 00..22 

PPrroossttaattee  

[[1166]] 
1144 9900%% 112255 2288 00..9922 88 9944%% 117755 66 33..4422 99 9933%% 110000 00..9922 

GGlliioommaass  

[[1177]] 
55 9900%% 7755 2266 11..4477 44 9922%% 5500 99 11..33 33 9944%% 110000 00..5566 
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These comparative results indicate that miFD consistently achieves significantly better results 

than the other GSP methods and miLPC is the least accurate method. Although miFD provide better 

performance than miDWD, miDWD requires fewer genes to produce accurate clustering. 

Fig. (10) presents the validation indices of the GSP methods. The figure shows that DWD and FD 

have generally average silhouette widths which are either close or greater than 0.5 which indicates 

they produce reasonable partitions of the data samples. Moreover, FD’s values are systematically 

higher than DWD’s. On the other hands, LPC clustering generates low ASWs and even in one 

instance, where the width is smaller than 0.2, it is not able to produce structured clusters. This 

figure also provides DB-indices which are in lines with ASWs. This analysis of validation indices 

confirms the earlier conclusion based on performance: clustering based on the miFD method is 

consistently the best GSP approach.  

 

 

 

 

 

 

 

 

 
Figure 10 Validation of the GSP methods with DB and ASW 

 

Table 4 shows the complete analysis of the GSP methods compared with earlier clustering 

methods described in section 2.1. These results demonstrate the superior clustering performance of 

the miFD method over all other methods. Since only partial results are available regarding the 

GA/SVM method, the fact it outperforms miFD for the Colon dataset is not fully conclusive. In any 

case, compared to our approach, GA/SVM has limitations. First, since it is based on GA 

optimisation, GA/SVM is very computationally expensive. Secondly, unlike the miFD method, it 

requires a training dataset, which may not be available in some applications.  
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Table (4): Complete Comparative analysis and comparative of GSP and traditional clustering methods 

using different microarray dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

In this paper, we introduced a detailed comparative analysis of GSP methods for microarray 

clustering. The performance analysis of these methods on different well known test bench 

microarray datasets indicates that the miFD method outperform all the other GSP and traditional 

methods without the need for either training datasets or vector quantisation analysis. The quality of 

the results obtained from our miFD approach suggests that this method is able to partition the 

samples of the signal data space by extracting the relevant features. This can be explained by the 

fact that the miFD cluster method depends on intrinsic relationship in the sample cluster set, rather 

than geometric shape or distances. Furthermore, provides enhanced characterization property 

indicated by the interaction between the smallest partitions with the distribution of the samples to a 

degree that cannot be matched by traditional statistical measurements.  

Also, our study indicates that the proposed methods can be applied in future GSP microarray 

Method Author Leukaemia Colon Hepatocellular Prostate Gliomas 

T-test Golub,1999[7] 85%     

T-test Alone,1999[8]  87%    

FLC Iizuka, 2003[12]   93%   

kNN Singh,2002 [16]    90%  

kNN Nutt,2003 [17]     86% 

PAM Tibhirani,2002[19] 95% 83% 59%  67% 

MARS Mukkamala,2005 [22] 85% 80%  92%  

CART Mukkamala,2005 [22] 92% 95%  96%  

LGP Mukkamala,2005 [22] 95% 85%  96%  

RF Mukkamala,2005 [22] 100% 90%  88%  

PLSLD Nguyen,2002[23] 97% 92%    

KPCA Liu,2005[20] 97% 100%    

FJC Jong,2003[13] 91% 54%    

Two-way Chandra,2006[9] 96% 88%    

SVM Furey,2000[11] 94% 90%    

MRMR Ding,2004[25] 100% 94%    

GA/SVM Huerta,2006[14] 100% 99%    

P-ICR Huang, 2006[21] 95% 86% 62%  74% 

miLPC  100% 95% 76% 90% 90% 

miDWD  100% 97% 90% 94% 92% 

miFD  100% 98% 92% 93% 94% 
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clustering studies for different diagnostic and personalised healthcare systems. Ongoing work is 

currently underway to integrate adaptive schemes into the presented methods to provide better 

processing capabilities for testing larger datasets, different diseases and genetic samples without the 

need of the relevant parametric selection procedures. Further work on non-stationary data samples 

using adaptive DSP methods is currently on going. The GSP methods present a suitable approach 

for real-time processing of different gene expression data sets that might be required in future 

studies in areas such as mobile healthcare or individualised medicine. Further work will focus on 

the application of the presented methods to gene selection instead of sample selection. 
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