Why inverse proteins arerelatively abundant
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Abstract: Studies have shown that inverse proteins are velgtabundant. In this work, we investigate the
proposition that the repeat patterns they shark pibtein sequences explain this phenomenon. Usingw
artificial set of peptide sequences which alsoldisphese features and a random set, we showhéairesence
of repeats contributes to protein sequence sinyldfurther analysis confirms that most inverseqirs exhibit
repeats. Therefore, we suggest the relative abwedahinverse proteins can be explained by the tlaey
display the same repeat structures and amino aoftepsity of existing proteins.
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INTRODUCTION

Driven by applications such as drug design, thaaekibn of biologically relevant features from it

sequences has become an essential task of biomticenMethodologies have been developed to préaiot

sequence alone essential protein attributes inodudheir secondary and 3D structures [1, 2], subleel
location [3,4], interaction partners [5], foldingogess [6] and functional annotation [7, 8]. Moregvmany
web-servers are available providing user-frienddpld for in-silico analysis of proteins [9]. Thisaper
investigates why inverse proteins are relativelyratant in order to gain valuable insight into protsequence
properties.

Many studies have focused on peptide chains crdageithversing protein sequencedhese sequences are
known as either ‘inverse’ or ‘reverse’ sequencels [iI2, 13]. Initially, it was assumed that, sinceirgo acids
share the same neighbours in a sequence and éssivthey would fold into similar 3D structuresrlly
analysis of structural similarity discovered a feases where the inverse protein had a mirroredeiprot
structure [11]. However, a more comprehensive skeatgblished there is no correlation between thetsires
of a protein and its inverse [12]. Consequentlyhars suggested inversion of protein sequencesidmilused
to produce artificial sequences with similar amawd propensity to real sequences, but folding fsedom
proteins. On the other hand, inverse sequencemare common in nature than one would expect by ahan
[13]. Therefore, they must display some charadiesighat are not present in random sequences. Haw
date, the relative abundance of inverse proteimaigs unexplained.

Another line of research has focused on sequenpEate [14]. Andrade et al. have highlighted thedrtgnce
of duplication in protein evolution [15]. In partiar, the study of the evolution of multi-domainof@ins
revealed that around 30% of them evolved throughtitons [16]. Moreover, it was shown around 35R40ag
structural repeats display a 2-fold symmetry tlatasponds to a homodimer configuration [17]. Femthore,
experimental work discovered that creation of rigipes within a random sequence tends to produceemo
proteins with secondary structures than randomesezps [18]. This led to the suggestion that rapatitould
be a process allowing the generation of De noveeprs.

In this work, we investigate the proposition thavdrse peptide chains are more common than rand@®s o
mainly because they display periodicity and reppediterns present in protein sequences. First, we b@eated
a new artificial reference set of peptide sequercégpproteins’ - which also shares these featwvitsout
preservation of either amino acid composition dghleourhood as in the case of inverse peptide shdinen,
after querying protein sequence database for gitgilave compared results with those obtained witrerse
and random sets.

MATERIALSAND METHODS

New artificial peptide sequences: opproteins

In order to test the hypothesis that the abundahasverse proteins can be explained by the faat ifiversion
preserves repetition properties of a protein secgiewe needed to design a new artificial peptidesdd
sharing this feature. This can be achieved by tpkimepresentative sample of known proteins andlyigpa
global operation where each given amino acid isacesul by a different one. However, since substitutf a
residue by another tends to be neutral if they eslsamilar properties, a scheme where replacemests w
random could lead to the creations of peptides whauld still be aligned with their proteins ofeegnces. To
prevent this and prove that repetition instead rafna acid environment is the main explanation beHime
abundance of inverse proteins, we propose to genaraet of peptide sequences sharing repeat mattéth
reference proteins, but displaying very differemirzo acid environments.

We introduce the concept of ‘opprotein’: an ‘opgiat is the peptide chain which is the most unlkegiven
protein sequence, i.e. its opposite. More spetificthe opposite of a protein sequenegor ‘opprotein’, &P,

is defined as the amino acid sequence where eatuesof P is replaced by an amino acid with the most
opposite physico-chemical properties as definedalgiven substitution matrix. However, since a fawireo
acids such as tryptophan, proline and aspartic a&idhe most opposite to several others, a sisydstitution

of each residue by the most different would notdpice a sequence composed of 20 different aming.alrid
order to ensure that each residue is replaceddiffeaent one, an optimisation algorithm was usegtoduce
the optimal substitution table in term of replacthg 20 amino acids by their opposites.

" Inverse sequences should not be confused with Semse’ proteins where the inverse of coding DNA
sequences are used to produce an inverse peptdeafttomplementary codons [10].



Generation of opproteins

The optimisation task that needs to be performedeftned as producing the optimal opposite lispairs of
amino acids using a given substitution matrix &®st function quantifying the oppositeness betwakpairs
of residues. In this work, the popular BLOSUMG62 rixatvas used [19], e.g. it is the default matrixBhAST
[20], but any substitution matrix would be equallyitable.

This cost minimization problem corresponds to adgbpassignment problem, which was solved by Kuthn i
1955 using the Hungarian algorithm [21]. It is imamt to note that, in term of oppositeness cosylstitution
matrix is not symmetrical: although the substitotamst between A and B equal the cost between BAaride
most opposite residue of A may be B, whereas thet mpposite residue of B could be C. For example,
according to BLOSUM®62, tryptophan is the amino ashdch is the most different from serine with auelof

-3, while asparagines, proline and aspartic acditae most different from tryptophan with a valde4 In this
case, serine is only rankel] i tryptophan’s list of most different amino acids

Table 1 shows the amino acid substitution tableegeged from BLOSUMG62 using the Hungarian algorithm.
For each substitution the ranking of the substifatalso provided. 12 substitutions are symmetrid ¢he
average ranking of the chosen amino acid in thefimost different amino acids is 2.05.

Tablel. Amino acid substitution table generated from BLO&?2 - symmetric substitutions are shown in bold.

Resdue |A|R|N|D|C|Q|E|GIH|I|L[K[M|[F[P[s[T[W]Y

Opposte [\ iy | alM|E|I|c|L|T|o|lD|F|lc|PlY/W|H|S|K]|R
residue

Rank in

aleames | 2163 1] 1)1 1 8 42 1 1 1 18 11|41

Since all substitutions are not symmetric, the gjipoof the opprotein d?, &P, is notP: ©&P£P. However,
as illustrated in the following alignment© &6 OP=P, and ©SP andP are very similar. Experiment using
PAM250 [22] instead of BLOSUMG62 also shows tiao & OP=P.

P ARNDCQEGHI LKMFPSTWYV
e6P ARNGCQEDHI MPLYKSTWFV
pe60P ARNDCQEGHI LKMFPSTWYV

***_***_**: T ***:*
Datasets

Datasets used for this study consist of a set mfesentative protein sequences, its conversiomppooteins

and inverse sequences, and a set of random pejgiifleences. Representative protein sequences viesietes

from the PDB [23] on 1B July 2009 using the advanced search option of REBB [24] selecting entries
containing only 1-chain proteins of at least 100remacids and trimmed so that no single pair otgirs has

sequence identity higher than 30%. 5489 sequenees ngturned with an average length of 263 residl&s

call this reference set PDB30.

In order to produce opproteins and inverse seq@enee created a Java applet [25] which reads a file
containing protein sequences and converts themeitih@r inverse proteins or opproteins using theddwian
algorithm [21] and a specified substitution matfike set of opproteinggPDB30, was generated using PDB30
as the input file and BLOSUMG62 [19]. Similarly, ttset of inverse sequencesyPDB30, was created by
inversing all sequences of PDB30.

Finally, a set of random peptide chainan5489, was generated using a random sequence gemeiath
allocates the same propensity to all residues [Pl set is composed of 5489 sequences of lerGhrésidues
so that it can be compared with the other artifis@és derived from PDB30.

Figure 1 shows the average amino acid propensii@sd in the three artificial datasets and PDB3Gctvlis
used as reference (by definition PDB30 andPDB30 have identical amino acid propensities). Tigare
reveals that the residue composition of opprotsimarticularly unnature-like.
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Figurel. Amino acid propensities found in PDB30i&vPDB30, ©PDB30 ppPDB30) and-an5489.
M ethodology

Sequences of the three artificial datasets,imnd?DB30, ©OPDB30 andran5489, were analysed to establish if
they show similarity to existing proteins. Each w=oce was processed by BLASTP 2.2.20 using standard
parameters against their non-redundant proteirbdagadownloaded on " Zuly 2009 (9,298,190 entries) [27].
Then, among the retrieved protein sequences thesiolarvalue, if any, was extracted.

RESULTSAND DISCUSSION

Amino acid environment of opproteins

In order to illustrate that the amino acid envir@mnhof opproteins i©PDB30 can be significantly different
from those found in PDB3nvPDB30 andan5489, we looked for the presence of amino acid esecgs which
have never been found in any protein chain (inclgdinversed chains), or ‘nullomers’ [28]. It hasehe
hypothesised they are signatures of natural selectigainst deleterious sequences [28, 29], but thei
significance is still under investigation [30]. Amding to Hampikian et al.’s web site [31], as int@ber 2009,

38 absent length-5 amino acid sequences have Heetified as nullomers [28]. Assuming that eachusege

of 5 residues is equiprobable, the number of nudienwhich are expected to be found in a randonsdata
5489 peptide sequences of length 263 can be ctddulasing the binomial distribution to represergith
discrete probability distribution. In a random data the expected number of hits is 16.9 with adsted
deviation,s, of 4.1.

Scanning ofan5489 reveals the presence of 16 nullomers, whictfirtos its randomness. 37 nullomers were
found in &PDB30. This demonstrates that opproteins displayamcid environments which cannot be found
in nature. Moreover, since a distance of 4.5om the expected value is highly significant,stisiroves that
opproteins are not random proteins.

Abundance of inver se proteins

Following the processing of the artificial peptisiets by BLASTP, we extracted the E-value of thet it for
each sequence. Figure 2 is a plot of these fitsEhialues after clustering them into differentsiach bin
accumulates values between consecutive powers ,ofel0bin-i contains E-values ranging from 1X10to
1x10" excluded. The last bin, called ‘1+', containss®buences which did not receive any hit with arafe
smaller than 1x10 Consequently, for each test set, the sum ofi@lirecorded on the graph is equal to 5489,
i.e. the number of sequences per set. In data$esigen5489, according to standard E-value calmrat[32],
one would theoretically expect in our experimentang 50 random hits, respectively, in bin -3’ dr#l. In
practice, our results are more conservative simee first 14 hits of the random set appear in bi@. ‘-
Consequently, in our analysis we will consider thigg with an E-value<1xIdare significant.

With 19 significant hits innvPDB30, Figure 2 confirms results of previous stadi3]: inverse sequences are
much more protein-like than random sequences. Whenalue>1x10, the opprotein hit profile is generally
close to the random sequence one. However, Figuas@reveals that, in 5 instances, there is a hagh
similarity between opproteins @d®PDB30 and a real protein. Remarkably, 4 proteirusages produced both
inverse and opproteins in this list, Table 2. lewiof these results, one may suggest that oppsoshiare some
properties with inverse and real sequences, whigmet found in random sequences.
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Figure2. Similarity of artificial peptide sequences witkal protein sequences.

Initial investigation of significant hits revealddat 3 inverse sequences match the chain 1C94|khwias
artificially engineered to study the inverse stanetof gcn4 leucine zipper [33]. Therefore, theyavexcluded
from further analysis. The remaining sequences when processed by Swelfe v1.0 [17] using default
parameters to detect significant internal repaatgafue < 0.01). Information related to the preseotrepeats
was also extracted from publications associatel thi¢ proteins of interest. These data are showiale 2.

Table 2. List of proteins whose either inverse or opposgquence has shown some significant similarity to
protein sequence, associated E-values and ovenldbshe first hit and numbers of significant hiSwelfe
scores and repeat related features.

PDB . . | swelfe
code Length | Inverse | Overlap | Hits| Opprotein | Overlap | Hits ore Repeat related feature
3DU1:X 257 5E-12 82.5% 68 6E-14 82.1% 17 145 Panttge repeat protein
218KA | 201 | 1E-10| 82.6%| 74  1E-13| 73.6% 43 133 |usionof 2pentapeptide
repeat proteins
3G06:A 622 1E-11 30.7% 6 5E-10 25.7% L3 25[7 Leucicierepeat protein
3BZ5:A 457 2E-10 54.0% 2 218 15 leucine-rich repeats
10ZN:A 285 3E-09 92.3% 1 104 Leucine-rich repeat module
2GY5:A 423 2E-07 40.7% 22 86 3 immunoglobulin domaing
3CU9:A | 314 | 6E-07| 401%| 1 0 Five-bladed-beta-propeller
fold domain
206W:A 150 1E-06 62.7% 5 8E-07 56.7% 5 74 Pentégepepeat protein
IN7D:A 699 2E-06 45.8% 1 132 Two beta propeller modules
10 left-handed beta-helix
2JF2:A 264 1E-05 69.3% 1 72 coils, each composed of 3
hexapeptide repeats
2Q7Z:A | 1931 | 1E-05| 20.9%| 7 1800 30 short complement
regulator domains
1ZIW:A 680 2E-04 60.9% 1 156 23 leucine-rich repeats
70DC:A 424 2E-04 35.8% 1 0 Alpha/beta barrel domain
3GAUA | 1213 | 4E-04| 272%| 1 324 20 short complement
regulator domains
211J:A 575 5E-04 29.6% 1 0 /
2G5D:A 422 7E-04 30.3% 1 0 Double psi beta-barrel
202G:A 223 8E-04 79.8% 1 0 /

Most of these proteins, i.e. 12 out of 17, disptignificant repeats as defined by Swelfe [17]. Mwes,
proteins without repeats tend to produce eitheelig®w sequences or opproteins with lower E-valuesoaity
receive one single significant hit. Literature imfation also confirms the presence of repeats peatng
structural elements, i.e. beta-barrel, beta prepaihd duplicated folds, in most cases.



In order to illustrate the effect of repeats oneirse and opprotein sequences, we present a dedaiddygbis of
HetL (PDB ID code 3DUL1:X), a protein involved imgdation of heterocyst differentiation [34]. Figu8ea) and
c) highlight, respectively, the pentapeptide repghich composes its sequence and the associatsttusal
repetitions. Multiple alignment of all these pergppdes allows the generation of a well conservaitepn as
represented by its consensus logo [35], Figure 3 b)

a) >3DUl:X
---HM NVGEI LRHYA AGERN FQHIN LOEIE LTNES LTGRD LSYRED LRQTR
LGKSN FSHTC LREAED LSEAT LWGID LSEZD LYRET LEREZD LTGREK LVKTR
LEEEN LIKAES LCGAN LNSAEN LSEC LEFQRD LRPSS NQRTD LGYVL LTGAED
LSYAD LRRLS LHHAN LDGREK LCRAN FGRTI QUG-N LA-AD LSGAS LOGAD
LSYAN LESATI LREEN LOGRD TGAI LKDLE LEGRI MPDGS IH

b) c)

” __A—
: [ —
= = — =_
D

Figure3. Periodicity of the 3DU1:X protein: a) sequencmif@ acids belonging to the initial alpha helix are
italic, those starting a beta turn are in bold)¢dsensus logo and c¢) 3D structure

Since inverse and opprotein sequences conservéti@mp@atterns, in this instance, they can alsalbscribed
by a 5-residue long consensus logo, Figure 4 a)bamdspectively. Figure 4 c), €), g), i) and k3pday the 5-
residue long descriptors associated with the firsignificant hits of the inverse sequence of 3DUThe logos
reveal that the first 3 hits contain extremely wadnserved pentapeptides forming more than 50%hedet
protein sequences. The 2 other hits involve pretwiith a repeat pattern of 10 residues, which colers 10%
of their long sequences. Individual alignmentstafse consensus logos with the descriptor of thergev of
3DU1:X demonstrate why this inverse sequence obftiaits with such low E-values: up to 4 of the corsses
positions describing the hit proteins match thelo§the inverse sequence.

Similarly, Figure 4 d), f), h), j) and I) presehietconsensus logos of the proteins which are th& similar to
the opprotein of 3DU1:X. They are all made of wadhserved pentapeptides where the first residumoist
likely to be an aspartic acid, which is in congisteith the descriptor of the opprotein. It is imsting to note
that despite their very different origins, both theerse and the opprotein sequences are matchéietsame
protein (XP_002169517.1).

Discussion

In agreement with some experimental work [18] wh#tiows the presence of repeating elements within a
peptide sequence tends to make the amino acid aomnati@ protein-like, our study suggests that repastshe
main contributor of the abundance of inverse pnateHowever, since inverse proteins are more conimam
opproteins that share the same repeat patternsr dhtors must be involved. Unlike opproteins,eirse
peptide sequences have the same residue propasdithoown proteins. Thus, inverse sequences amgsiiatilly
more similar to real proteins than opproteins. @guently, amino acid distribution must also playaat in the
similarity between a peptide chain and a protekpeEiments conducted in this study cannot deterriilueal
residue environments, which are arguably conseirvéaverse sequences, also have an impact on &seguo

be protein-like. This issue could be addressediinré work, for example, by comparing results aiedi by
random sequences produced from an amino acid lliftbh against random sequences generated piecewise
from short amino acid sequences extracted frommeréins.

In conclusion, we propose the relative abundandewsrse proteins can mainly be explained by thw tlaey
display the same repeat structures and amino aofkpsity of existing proteins. A consequence & the use
of inverse sequences as a negative set in expdsmmbauld be done with caution as they cannot bsidered
as random.
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Opprotein sequence of 3DULX
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Figure4. Consensus logos describing the a) inverse angptein sequences of 3DUL:X and their 5 best hits
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