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Abstract: Studies have shown that inverse proteins are relatively abundant. In this work, we investigate the 
proposition that the repeat patterns they share with protein sequences explain this phenomenon. Using a new 
artificial set of peptide sequences which also display these features and a random set, we show that the presence 
of repeats contributes to protein sequence similarity. Further analysis confirms that most inverse proteins exhibit 
repeats. Therefore, we suggest the relative abundance of inverse proteins can be explained by the fact they 
display the same repeat structures and amino acid propensity of existing proteins. 
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INTRODUCTION 

Driven by applications such as drug design, the extraction of biologically relevant features from protein 
sequences has become an essential task of bioinformatics. Methodologies have been developed to predict from 
sequence alone essential protein attributes including their secondary and 3D structures [1, 2], subcellular 
location [3,4], interaction partners [5], folding process [6] and functional annotation [7, 8]. Moreover, many 
web-servers are available providing user-friendly tools for in-silico analysis of proteins [9]. This paper 
investigates why inverse proteins are relatively abundant in order to gain valuable insight into protein sequence 
properties. 

Many studies have focused on peptide chains created by inversing protein sequences*. These sequences are 
known as either ‘inverse’ or ‘reverse’ sequences [11, 12, 13]. Initially, it was assumed that, since amino acids 
share the same neighbours in a sequence and its inverse, they would fold into similar 3D structures. Early 
analysis of structural similarity discovered a few cases where the inverse protein had a mirrored protein 
structure [11]. However, a more comprehensive study established there is no correlation between the structures 
of a protein and its inverse [12]. Consequently, authors suggested inversion of protein sequences could be used 
to produce artificial sequences with similar amino acid propensity to real sequences, but folding like random 
proteins. On the other hand, inverse sequences are more common in nature than one would expect by chance 
[13]. Therefore, they must display some characteristics that are not present in random sequences. However, to 
date, the relative abundance of inverse proteins remains unexplained. 

Another line of research has focused on sequence repeats [14]. Andrade et al. have highlighted the importance 
of duplication in protein evolution [15]. In particular, the study of the evolution of multi-domain proteins 
revealed that around 30% of them evolved through repetitions [16]. Moreover, it was shown around 35% of long 
structural repeats display a 2-fold symmetry that corresponds to a homodimer configuration [17]. Furthermore, 
experimental work discovered that creation of repetitions within a random sequence tends to produce more 
proteins with secondary structures than random sequences [18]. This led to the suggestion that repetition could 
be a process allowing the generation of De novo proteins.  

In this work, we investigate the proposition that inverse peptide chains are more common than random ones 
mainly because they display periodicity and repeat patterns present in protein sequences. First, we have created 
a new artificial reference set of peptide sequences – ‘opproteins’ - which also shares these features without 
preservation of either amino acid composition or neighbourhood as in the case of inverse peptide chains. Then, 
after querying protein sequence database for similarity, we compared results with those obtained with inverse 
and random sets. 

MATERIALS AND METHODS 
 
New artificial peptide sequences: opproteins  

In order to test the hypothesis that the abundance of inverse proteins can be explained by the fact that inversion 
preserves repetition properties of a protein sequence, we needed to design a new artificial peptide dataset 
sharing this feature. This can be achieved by taking a representative sample of known proteins and applying a 
global operation where each given amino acid is replaced by a different one. However, since substitution of a 
residue by another tends to be neutral if they share similar properties, a scheme where replacements were 
random could lead to the creations of peptides which could still be aligned with their proteins of references. To 
prevent this and prove that repetition instead of amino acid environment is the main explanation behind the 
abundance of inverse proteins, we propose to generate a set of peptide sequences sharing repeat patterns with 
reference proteins, but displaying very different amino acid environments.  

We introduce the concept of ‘opprotein’: an ‘opprotein’ is the peptide chain which is the most unlike a given 
protein sequence, i.e. its opposite.  More specifically, the opposite of a protein sequence, P, or ‘opprotein’, �P, 
is defined as the amino acid sequence where each residue of P is replaced by an amino acid with the most 
opposite physico-chemical properties as defined by a given substitution matrix. However, since a few amino 
acids such as tryptophan, proline and aspartic acid are the most opposite to several others, a simple substitution 
of each residue by the most different would not produce a sequence composed of 20 different amino acids. In 
order to ensure that each residue is replaced by a different one, an optimisation algorithm was used to produce 
the optimal substitution table in term of replacing the 20 amino acids by their opposites.   

                                                           
*
 Inverse sequences should not be confused with ‘anti sense’ proteins where the inverse of coding DNA 

sequences are used to produce an inverse peptide chain of complementary codons [10]. 



 

 

Generation of opproteins 

The optimisation task that needs to be performed is defined as producing the optimal opposite list of pairs of 
amino acids using a given substitution matrix as a cost function quantifying the oppositeness between all pairs 
of residues. In this work, the popular BLOSUM62 matrix was used [19], e.g. it is the default matrix in BLAST 
[20], but any substitution matrix would be equally suitable.  

This cost minimization problem corresponds to a typical assignment problem, which was solved by Kuhn in 
1955 using the Hungarian algorithm [21]. It is important to note that, in term of oppositeness cost, a substitution 
matrix is not symmetrical: although the substitution cost between A and B equal the cost between B and A, the 
most opposite residue of A may be B, whereas the most opposite residue of B could be C. For example, 
according to BLOSUM62, tryptophan is the amino acid which is the most different from serine with a value of 
-3, while asparagines, proline and aspartic acid are the most different from tryptophan with a value of -4. In this 
case, serine is only ranked 4th in tryptophan’s list of most different amino acids.  

Table 1 shows the amino acid substitution table generated from BLOSUM62 using the Hungarian algorithm. 
For each substitution the ranking of the substitute is also provided. 12 substitutions are symmetric and the 
average ranking of the chosen amino acid in the list of most different amino acids is 2.05.  

Table 1. Amino acid substitution table generated from BLOSUM62 - symmetric substitutions are shown in bold. 
 

Residue A R N D C Q E G H I L K M F P S T W Y V 
Opposite 
residue 

N V A M E I C L T Q D F G P Y W H S K R 

Rank in 
BLOSUM62 

2 1 6 3 1 1 1 1 5 2 1 1 1 1 3 1 1 4 4 1 

 

Since all substitutions are not symmetric, the opposite of the opprotein of P,�P, is not P: ��P≠P. However, 
as illustrated in the following alignments, ����P=P, and ��P and P are very similar. Experiment using 
PAM250 [22] instead of BLOSUM62 also shows that ����P=P. 

P  ARNDCQEGHILKMFPSTWYV 
θθP  ARNGCQEDHIMPLYKSTWFV 
θθθθP  ARNDCQEGHILKMFPSTWYV 
  ***.***.**: :: ***:* 
 
Datasets 

Datasets used for this study consist of a set of representative protein sequences, its conversions to opproteins 
and inverse sequences, and a set of random peptide sequences. Representative protein sequences were extracted 
from the PDB [23] on 16th July 2009 using the advanced search option of RCSB PDB [24] selecting entries 
containing only 1-chain proteins of at least 100 amino acids and trimmed so that no single pair of proteins has 
sequence identity higher than 30%. 5489 sequences were returned with an average length of 263 residues. We 
call this reference set PDB30.  

In order to produce opproteins and inverse sequences, we created a Java applet [25] which reads a file 
containing protein sequences and converts them into either inverse proteins or opproteins using the Hungarian 
algorithm [21] and a specified substitution matrix. The set of opproteins, �PDB30, was generated using PDB30 
as the input file and BLOSUM62 [19]. Similarly, the set of inverse sequences, invPDB30, was created by 
inversing all sequences of PDB30. 

Finally, a set of random peptide chains, ran5489, was generated using a random sequence generator which 
allocates the same propensity to all residues [26]. This set is composed of 5489 sequences of length 263 residues 
so that it can be compared with the other artificial sets derived from PDB30. 

Figure 1 shows the average amino acid propensities found in the three artificial datasets and PDB30 which is 
used as reference (by definition PDB30 and invPDB30 have identical amino acid propensities). The figure 
reveals that the residue composition of opproteins is particularly unnature-like.  

 



 

 

 
Figure 1. Amino acid propensities found in PDB30 & invPDB30, �PDB30 (opPDB30) and ran5489. 

Methodology 

Sequences of the three artificial datasets, i.e. invPDB30, �PDB30 and ran5489, were analysed to establish if 
they show similarity to existing proteins. Each sequence was processed by BLASTP 2.2.20 using standard 
parameters against their non-redundant protein database downloaded on 17th July 2009 (9,298,190 entries) [27]. 
Then, among the retrieved protein sequences the lowest E-value, if any, was extracted. 

RESULTS AND DISCUSSION 
 
Amino acid environment of opproteins 

In order to illustrate that the amino acid environment of opproteins in �PDB30 can be significantly different 
from those found in PDB30, invPDB30 and ran5489, we looked for the presence of amino acid sequences which 
have never been found in any protein chain (including inversed chains), or ‘nullomers’ [28]. It has been 
hypothesised they are signatures of natural selection against deleterious sequences [28, 29], but their 
significance is still under investigation [30]. According to Hampikian et al.’s web site [31], as in October 2009, 
38 absent length-5 amino acid sequences have been identified as nullomers [28]. Assuming that each sequence 
of 5 residues is equiprobable, the number of nullomers which are expected to be found in a random dataset of 
5489 peptide sequences of length 263 can be calculated using the binomial distribution to represent their 
discrete probability distribution. In a random dataset, the expected number of hits is 16.9 with a standard 
deviation, σ, of 4.1. 

Scanning of ran5489 reveals the presence of 16 nullomers, which confirms its randomness. 37 nullomers were 
found in �PDB30. This demonstrates that opproteins display amino acid environments which cannot be found 
in nature. Moreover, since a distance of 4.9 σ from the expected value is highly significant, this proves that 
opproteins are not random proteins.  

Abundance of inverse proteins 

Following the processing of the artificial peptide sets by BLASTP, we extracted the E-value of the first hit for 
each sequence. Figure 2 is a plot of these first hit E-values after clustering them into different bins: each bin 
accumulates values between consecutive powers of 10, i.e. bin -i contains E-values ranging from 1x10-i-1 to 
1x10-1 excluded. The last bin, called ‘1+’, contains all sequences which did not receive any hit with an E-value 
smaller than 1x101. Consequently, for each test set, the sum of all hits recorded on the graph is equal to 5489, 
i.e. the number of sequences per set. In datasets of size 5489, according to standard E-value calculations [32], 
one would theoretically expect in our experiments 5 and 50 random hits, respectively, in bin ‘-3’ and ‘-2’. In 
practice, our results are more conservative since the first 14 hits of the random set appear in bin ‘-2’. 
Consequently, in our analysis we will consider that hits with an E-value<1x10-3 are significant. 

With 19 significant hits in invPDB30, Figure 2 confirms results of previous studies [13]: inverse sequences are 
much more protein-like than random sequences. When E-value>1x10-3, the opprotein hit profile is generally 
close to the random sequence one. However, Figure 2 also reveals that, in 5 instances, there is a very high 
similarity between opproteins of �PDB30 and a real protein. Remarkably, 4 protein sequences produced both 
inverse and opproteins in this list, Table 2. In view of these results, one may suggest that opproteins share some 
properties with inverse and real sequences, which are not found in random sequences. 



 

 

 

Figure 2. Similarity of artificial peptide sequences with real protein sequences. 

Initial investigation of significant hits revealed that 3 inverse sequences match the chain 1C94|A, which was 
artificially engineered to study the inverse structure of gcn4 leucine zipper [33]. Therefore, they were excluded 
from further analysis. The remaining sequences were then processed by Swelfe v1.0 [17] using default 
parameters to detect significant internal repeats (p-value < 0.01). Information related to the presence of repeats 
was also extracted from publications associated with the proteins of interest. These data are shown in Table 2.  

Table 2. List of proteins whose either inverse or opposite sequence has shown some significant similarity to a 
protein sequence, associated E-values and overlaps with the first hit and numbers of significant hits, Swelfe 
scores and repeat related features. 

PDB 
code 

Length Inverse Overlap Hits Opprotein Overlap Hits  Swelfe 
score Repeat related feature 

3DU1:X 257 5E-12 82.5% 68 6E-14 82.1% 17 145 Pentapeptide repeat protein 

2J8K:A 201 1E-10 82.6% 74 1E-13 73.6% 43 133 
Fusion of 2 pentapeptide 

repeat proteins 

3G06:A 622 1E-11 30.7% 6 5E-10 25.7% 5 257 Leucine-rich repeat protein 

3BZ5:A 457 2E-10 54.0% 2 
 

  218 15 leucine-rich repeats 

1OZN:A 285 3E-09 92.3% 1 
 

  104 Leucine-rich repeat module 

2GY5:A 423 2E-07 40.7% 22 
 

  86 3 immunoglobulin domains 

3CU9:A 314 6E-07 40.1% 1 
 

  0 
Five-bladed-beta-propeller 

fold domain 

2O6W:A 150 1E-06 62.7% 5 8E-07 56.7% 5 74 Pentapeptide repeat protein 

1N7D:A 699 2E-06 45.8% 1 
 

  132 Two beta propeller modules 

2JF2:A 264 1E-05 69.3% 1 
 

  72 
10 left-handed beta-helix 
coils, each composed of 3 

hexapeptide repeats 

2Q7Z:A 1931 1E-05 20.9% 7 
 

  1800 
30 short complement 

regulator domains 

1ZIW:A 680 2E-04 60.9% 1 
 

  156 23 leucine-rich repeats 

7ODC:A 424 2E-04 35.8% 1 
 

  0 Alpha/beta barrel domain 

3GAU:A 1213 4E-04 27.2% 1 
 

  324 
20 short complement 

regulator domains 

2I1J:A 575 5E-04 29.6% 1 
 

  0 / 

2G5D:A 422 7E-04 30.3% 1 
 

  0 Double psi beta-barrel 

2O2G:A 223 
 

  8E-04 79.8% 1 0 / 

Most of these proteins, i.e. 12 out of 17, display significant repeats as defined by Swelfe [17]. Moreover, 
proteins without repeats tend to produce either inverse sequences or opproteins with lower E-values and only 
receive one single significant hit. Literature information also confirms the presence of repeats or repeating 
structural elements, i.e. beta-barrel, beta propeller and duplicated folds, in most cases.  



 

 

In order to illustrate the effect of repeats on inverse and opprotein sequences, we present a detailed analysis of 
HetL (PDB ID code 3DU1:X), a protein involved in regulation of heterocyst differentiation [34]. Figure 3 a) and 
c) highlight, respectively, the pentapeptide repeat which composes its sequence and the associated structural 
repetitions. Multiple alignment of all these pentapeptides allows the generation of a well conserved pattern as 
represented by its consensus logo [35], Figure 3 b). 

 

Figure 3. Periodicity of the 3DU1:X protein: a) sequence (amino acids belonging to the initial alpha helix are in 
italic, those starting a beta turn are in bold), b) consensus logo and c) 3D structure 

Since inverse and opprotein sequences conserve repetition patterns, in this instance, they can also be described 
by a 5-residue long consensus logo, Figure 4 a) and b) respectively. Figure 4 c), e), g), i) and k) display the 5-
residue long descriptors associated with the first 5 significant hits of the inverse sequence of 3DU1:X. The logos 
reveal that the first 3 hits contain extremely well conserved pentapeptides forming more than 50% of these 
protein sequences. The 2 other hits involve proteins with a repeat pattern of 10 residues, which only covers 10% 
of their long sequences. Individual alignments of those consensus logos with the descriptor of the inverse of 
3DU1:X demonstrate why this inverse sequence obtains hits with such low E-values: up to 4 of the consensus 
positions describing the hit proteins match the logo of the inverse sequence. 
Similarly, Figure 4 d), f), h), j) and l) present the consensus logos of the proteins which are the most similar to 
the opprotein of 3DU1:X. They are all made of well conserved pentapeptides where the first residue is most 
likely to be an aspartic acid, which is in consistent with the descriptor of the opprotein. It is interesting to note 
that despite their very different origins, both the inverse and the opprotein sequences are matched by the same 
protein (XP_002169517.1).     

 
Discussion 

In agreement with some experimental work [18] which shows the presence of repeating elements within a 
peptide sequence tends to make the amino acid chain more protein-like, our study suggests that repeats are the 
main contributor of the abundance of inverse proteins. However, since inverse proteins are more common than 
opproteins that share the same repeat patterns, other factors must be involved. Unlike opproteins, inverse 
peptide sequences have the same residue propensity as known proteins. Thus, inverse sequences are intrinsically 
more similar to real proteins than opproteins. Consequently, amino acid distribution must also play a part in the 
similarity between a peptide chain and a protein. Experiments conducted in this study cannot determine if local 
residue environments, which are arguably conserved in inverse sequences, also have an impact on a sequence to 
be protein-like. This issue could be addressed in future work, for example, by comparing results obtained by 
random sequences produced from an amino acid distribution against random sequences generated piecewise 
from short amino acid sequences extracted from real proteins.   

In conclusion, we propose the relative abundance of inverse proteins can mainly be explained by the fact they 
display the same repeat structures and amino acid propensity of existing proteins. A consequence is that the use 
of inverse sequences as a negative set in experiments should be done with caution as they cannot be considered 
as random.  
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Figure 4. Consensus logos describing the a) inverse and b) opprotein sequences of 3DU1:X and their 5 best hits 
c), e), g), i), k) and d), f), h), j), l) respectively. In addition to their NCBI Reference id, each hit is provided with 
its E-value and the number of pentapeptides which was used to create the logo. 
 



 

 

REFERENCES 

[1] Konopka, B.; Dyrka, W.; Nebel, J.-C.; Kotulska, M. Accuracy in predicting secondary structure of ionic 
channels. In: New Challenges in Computational Collective Intelligence, Studies in Computational Intelligence, 
Ed.; Springer-Verlag, 2009, 315-326. 
[2] Zhanga, Y. Protein structure prediction: when is it useful? Current Opinion in Structural Biology, 2009, 
19(2), 145-155. 
[3] Lin, H.; Chen, C.; Sung, T.; Ho, S.; Hsu, W. Protein subcellular localization prediction of eukaryotes using a 
knowledge-based approach. BMC Bioinformatics, 2009, 10(15), S8. 
[4] Chou, K. C.; Shen, H. B. Review: Recent progresses in protein subcellular location prediction. Anal. 
Biochem., 2007, 370, 1-16.  
[5] Shoemaker, B.; Panchenko, A. Deciphering protein–protein interactions. Part II. Computational methods to 
predict protein and domain interaction partners. PLoS Comput. Biol., 2007, 3, e43. 
[6] Chou, K. C.; Shen, H. B. FoldRate: A web-server for predicting protein folding rates from primary sequence, 
The Open Bioinformatics Journal, 2009, 3, 31-50. 
[7] Juncker, A.; Jensen, L.; Pierleoni, A.; Bernsel, A.; Tress, M.; Bork, P.; von Heijne, G.; Valencia, A.; 
Ouzounis, C.; Casadio, R.; Brunak, S. Sequence-based feature prediction and annotation of proteins. Genome 
Biol., 2009, 10(2),206. 
[8] Dyrka, W.; Nebel, J.-C. A Stochastic Context Free Grammar based Framework for Analysis of Protein 
Sequences, BMC Bioinformatics, 2009, 10, 323. 
[9] Chou, K. C.; Shen, H. B. Review: recent advances in developing web-servers for predicting protein 
attributes. Natural Science, 2009, 2, 63-92. 
[10] Chou, K. C.; Zhang, C. T.; Elrod, D. W. Do antisense proteins exist? J. Protein Chem., 1996, 15, 59-61. 
[11] Guptasarma, P. Reversal of peptide backbone direction may result in the mirroring of protein structure. 
FEBS Lett., 1992, 310, 205-210. 
[12] Lorenzen, S.; Gille, C.; Preißner, R.; Frömmel, C. Inverse sequence similarity of proteins does not imply 
structural similarity. FEBS Lett., 2003, 545(2-3), 105-9. 
[13] Preißner, R.; Goede, A.; Michalski, E.; Frömmel, C. Inverse sequence similarity in proteins and its relation 
to the three-dimensional fold. FEBS Lett., 1997, 414(2), 425-429. 
[14] Chou, K. C.; Heinrikson, R. L. Prediction of the tertiary structure of the complement control protein 
module. J. Protein Chem., 1997, 16, 765-773. 
[15] Andrade, M.; Perez-Iratxeta, C.; Ponting, C. Protein repeats: Structures, functions, and evolution. J. Struct. 
Biol., 2001, 134, 117–131. 
[16] Björklund, A.K.; Ekman, D.; Light, S.; Frey-Skött, J.; Elofsson, A. Domain Rearrangements in Protein 
Evolution. J. Mol. Biol., 2005, 353(4), 911-23. 
[17] Abraham, A.-L.; Rocha, E.; Pothier J. Swelfe: a detector of internal repeats in sequences and structures. 
Bioinformatics, 2008, 24(13), 1536-1537. 
[18] Shiba, K.; Takahashi, Y.; Noda, T. On the role of periodism in the origin of proteins. J. Mol. Biol., 2002, 
320, 833-840. 
[19] Henikoff, S.; Henikoff, J.G. Amino Acid Substitution Matrices from Protein Blocks. PNAS, 1992, 89, 
10915–10919. 
[20] Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. 
Biol., 1990, 215, 403-410. 
[21] Harold, W.K. The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly, 
1955, 2, 83–97. 
[22] Dayhoff, M.O.; Schwartz, R.; Orcutt, B.C. A model of Evolutionary Change in Proteins, Atlas of protein 
sequence and structure, 1978, 5(3), 345–358. 
[23] Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, 
P.E. The Protein Data Bank. Nucleic Acids Research, 2000, 28, 235-242. 
[24] Berman, H.M.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nature 
Structural Biology , 2003, 10(12), 980.  
[25] Nebel, J.-C.; Walawage, C.G. Protein Sequence Converter 
 http://staffnet.kingston.ac.uk/~ku33185/ProteinSequenceConverter/OpProtein.html (Accessed February 9, 
2010). 
[26] Stothard, P. The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein 
and DNA sequences. Biotechniques, 2000, 28, 1102-1104. 
[27] Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped 
BLAST and PSI-BLAST: a new generation of protein database search programs.  Nucleic Acids Res., 1997, 25, 
3389-3402. 



 

 

[28] Hampikian, G.; Andersen, T. Absent sequences: Nullomers and primes. In: Pacific Symposium on 
Biocomputing, 2007, 12, 355-366.  
[29] Tuller, T.; Chor, B.; Nelson, N. Forbidden penta-peptides, Protein Sci., 2007, 16(10), 2251–2259. 
[30] Acquisti, C.; Poste, G.; Curtiss, D.; Kumar, S. Nullomers: really a matter of natural selection? PLoS ONE, 
2007, 2(10). 
[31] Boise State University. Nullomer Project: SeqCount. http://trac.boisestate.edu/bioinformatics/nullomers/ 
(Accessed December 1, 2009). 
[32] Altschul, S.; Gish, W. Local alignment statistics. Meth. Enzymol., 1996, 266, 460-480. 
[33] Mittl, P.R.; Deillon, C.; Sargent, D.; Liu, N.; Klauser, S.; Thomas, R.M.; Gutte, B.; Grütter, M.G. The 
retro-GCN4 leucine zipper sequence forms a stable three-dimensional structure. Proc. Natl. Acad. Sci., 2000, 
97(6), 2562-6. 
[34] Ni, S.; Sheldrick, G.; Benning, M.; Kennedy, M. The 2A resolution crystal structure of HetL, a 
pentapeptide repeat protein involved in regulation of heterocyst differentiation in the cyanobacterium Nostoc sp. 
strain PCC 7120. J. Struct. Biol., 2009, 165, 47-52. 
[35] Crooks, G.; Hon, G.; Chandonia, J.; Brenner, S. WebLogo: A sequence logo generator, Genome Research, 
2004, 14, 1188-1190. 
 
 
 
 
 

 

 


