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Abstract: In this paper, we exploit the analogy between protein sequence alignment and image pair correspondence to 
design a bioinformatics-inspired framework for stereo matching based on dynamic programming. This 
approach also led to the creation of a meaningfulness graph, which helps to predict matching validity 
according to image overlap and pixel similarity. Finally, we propose an automatic procedure to estimate 
automatically all matching parameters. This work is evaluated qualitatively and quantitatively using a 
standard benchmarking dataset and by conducting stereo matching experiments between images captured at 
different resolutions. Results confirm the validity of the computer vision/bioinformatics analogy to develop 
a versatile and accurate low complexity stereo matching algorithm. 

1 INTRODUCTION 

Stereo matching is an essential step in the process of 
3D reconstruction from a pair of stereo images. 
Since it has many applications including robot 
navigation, security and entertainment, it has been 
an important field of computer vision for several 
decades. The problem of finding correspondences 
between pixels belonging to a pair of stereo images 
has been tackled using a wide range of techniques 
such as block correlations, dynamic programming, 
graph cut and simulated annealing; excellent reviews 
of the literature can be found in (Scharstein & 
Szeliski 2002) and (Lazaros, et al., 2008). Among 
these techniques, those based on dynamic 
programming (DP) have proved particularly 
attractive. They provide good accuracy and are 
computationally efficient (MacLean, et al., 2010): 
they are able to find the global minimum for 
independent scanlines in polynomial time. 

Although the design of some of these DP 
algorithms was inspired by that of Needleman and 
Wunsch (1970), e.g. (MacLean, et al., 2010), which 
was developed for alignment of protein sequences, 
to our knowledge, no author has exploited fully the 
analogy between protein and image correspondence. 
In this paper, we present a DP algorithm for stereo 
matching inspired by bioinformatics techniques. Not 

only does the bioinformatics analogy allow the 
design of an efficient stereo-matching algorithm, but 
it also permits investigating the limits of 
applicability of the algorithm in term of image 
overlap and pixel occlusion. This is illustrated here 
by producing dense disparity maps from images 
captured at different resolutions. Finally, we also 
propose a methodology allowing automatic 
configuration of all algorithm parameters. 

The structure of this paper is organised as 
follows. After reviewing relevant literature, we 
detail our novel stereo matching algorithm. Then, 
experiments are conducted on a benchmark dataset 
to validate our method. Finally, conclusions and 
future work are presented. 
 
1.1 Related Work 

First applications of DP to the problem of stereo 
matching produced sparse disparity maps using edge 
information (Baker & Binford 1981) and (Ohta & 
Kanade 1985). In order to generate dense maps, 
correspondences between scanlines were computed 
using pixel colour values. This task highlighted 
complications which were not present when dealing 
only with edges: they include image noise, indistinct 
image features and half occlusion, e.g. object points 
which can be seen only in one of the two images. 



 

Statistical frameworks have been proposed to 
explicitly tackle these issues (Geiger, et al., 1992), 
(Belhumeur, 1996), (Cox, et al., 1996) and (Torr & 
Criminisi 2004). Alternatively, (Bobick & Intille 
1999) suggested to pre-process images by producing 
a ‘disparity-space image’ based on block 
correlations and, then, use DP to find the optimal 
correspondences. In addition to rely on additional 
free parameters, all these approaches required 
additional calculations, which affect significantly the 
computational complexity of the stereo matching 
process.  

Since traditional DP algorithms compute line-
based global optimisations, they do not take into 
account vertical consistency between scanlines. 
Although some early methods attempted to address 
this issue (Ohta & Kanade 1985), (Belhumeur, 
1996), (Cox, et al., 1996) and (Bobick & Intille 
1999), they only refine results produced from 
scanline optimisation.  In order not to bias 
optimisation towards one direction, e.g. scanline, a 
new class of DP algorithms, which can be applied 
efficiently to tree structures, has been recently 
proposed (Veksler, 2005) and (Deng & Lin 2006). 
Results show they are significantly more accurate 
than scanline based methods with only a marginal 
increase of computational cost. 

In the last few years, the main emphasis has been 
on designing real-time solutions by adapting 
previous DP algorithms (Forstmann, et al., 2004), 
(Wang, et al., 2006) and (Salmen, et al., 2009). 
Eventually, the first FPGA hardware implementation 
of a DP-based stereo matching algorithm has just 
been proposed (MacLean, et al., 2010). Its 
performance demonstrates DP-based approaches 
provide the best compromise between accuracy and 
speed. 

2 METHODOLOGY 

We propose a new matching algorithm particularly 
suitable for the scanline to scanline correspondence 
problem, which can be applied to pairs of rectified 
stereo images. First, we introduce the bioinformatics 
technique on which it is based. Then, we explain 
how it can be extended to image processing. 

 

2.1 ‘Needleman-Wunsch’ algorithm 

The publication of the first ‘Atlas of Protein 
Sequence and Structure’ (Dayhoff, et al., 1965) 
which comprised the sequences of 65 proteins, 
arguably funded the field of bioinformatics. This 

gave researchers the opportunity to compare 
sequences to establish evolutionary relationship 
between proteins. Since protein sequences have an 
average length of 400 characters and mutate through 
substitution, insertion and deletion of characters, the 
alignment of a protein pair is not a trivial matter. 
The ‘Needleman–Wunsch’ algorithm (Needleman & 
Wunsch 1970) has provided an effective automatic 
method to produce an exact solution to the global 
alignment of two protein sequences. It is still at the 
core of the latest search engines (Altschul, et al., 
1997) and (Mackey, et al., 2002), which allow 
finding the best alignment between a given protein 
sequence and a large database such as UniProt 
(Leinonen, et al., 2004), which contains more than 
20 million entries.   

The ‘Needleman–Wunsch’ (N&W) algorithm is 
based on a dynamic programming approach which 
optimises the global alignment of character strings 
according to a scoring function taking into account 
possible mutations. In practice, alignments are 
produced by, first, filling in a scoring matrix and, 
then, ‘backtracking’ from the highest score in either 
the last column or the last line of the matrix. 

Each matrix cell stores the maximum value 
which can be achieved by extending a previous 
alignment (see Table 1). This can be done either by 
aligning the next character of the first sequence with 
the next character of the second sequence or 
extending either sequence by an empty character to 
record a character insertion or deletion (‘indel’). 

In the case of character alignment, i.e. diagonal 
motion in the matrix, the score depends on their 
values. A reward, match, is allocated if the two 
characters are identical, otherwise a penalty, 
mismatch, is applied since this highlights a mutation 
(substitution). When a sequence is extended, i.e. 
from either north or west, this is also penalised, gap, 
because it reveals that a mutation (insertion or 
deletion) occurred. While completing the matrix, in 
addition to the score of each cell, the direction(s) 
from which the score is coming must be recorded 
since they are used in the ‘backtracking’ process.  

The scoring matrix, M, is initialised by setting 
the initial score (top left cell) to zero and the first 
line and column according to cumulated gap 
penalties. Then, M is filled in using the following 
pseudo-code: 
 
for i = 1 to length(sequence1) 
{ 
 for j = 1 to length(sequence2) 
 { 
  north <- M(i-1,j) +gap 
  if( character1 = character2 ) 
   diagonal <- M(i-1,j-1) +match 



 

  else 
   diagonal <- M(i-1,j-1) +mismatch 
  endif 
  west <- M(i,j-1) +gap 
  M(i,j) <- max(north, diagonal, west) 
 } 
} 

 
Once the matrix is completed, the optimal alignment 
is extracted using the ‘backtracking’ process (see 
Table 2). First, the highest score cell in either the 
last column or row is identified. Then, using 
direction information, a path to the origin of the 
matrix is constructed. Finally, this path is converted 
into an alignment. It is important to note that, 
although the algorithm always finds the best global 
alignment(s) for a given scoring scheme, there may 
me several alignments with the optimal score.  

The whole process is illustrated with an example 
in Table 1 and 2, where the following scoring 
scheme is used: match=2, mismatch=0 and gap=-1. 
Representing gaps by ‘-‘, the resulting alignment is: 

EDECE 
AD-CE 

 
Table 1: Extension of initial alignment. The new cell score 
is shown in blue; 3 possible scores are shown in green. 
 

 - E D E 
- 0  �1� �2� �3�  
A �1� 0�  �1�

� �2�
�  

D �2� �1��  2�   


��   

� 
 
Table 2: Completed scoring matrix and optimal path 
highlighted in red. 
 

 - E D E C E 
- 0  �1� �2� �3� �4� �5�

A �1� ��  �1�
� �2�

� �3�
� �4�

�

D �2� �1��  ��  
�  0�  �1�

C �3� �2��  1� 2�  ��  2�  
E �4� �1�

0� 3�  2�
�
�  ��  

2.2 Application to stereo matching 

An analogy can be made between aligning protein 
sequences and matching pixels belonging to 
scanlines, since both tasks aim at establishing 
optimal correspondence between two strings of 
characters. In addition, the ‘right’ image of a stereo 
pair can be seen as a mutated version of the ‘left’ 
image: noise and individual camera sensitivity alter 
pixel values (i.e. character substitutions); and 
different view angle reveals previously occluded 
data and introduces new occlusions (i.e. insertion 

and deletion of characters). Consequently, the N&W 
approach is a very good starting point for developing 
a stereo matching algorithm, as seen in (MacLean, et 
al., 2010). The novelty of this work is that, first, it 
takes full advantage of the protein sequence/scanline 
analogy by refining the N&W based stereo matching 
algorithm with the relevant extensions proposed in 
the field of bioinformatics. Secondly, this analogy is 
exploited further by producing a graph which 
suggests the limits of applicability of the algorithm 
in term of image overlap and pixel occlusion. 

2.2.1 Scoring matrix 

Scoring matrices are filled in using scoring functions 
which quantify the cost of possible mutations. 
Different substitutions in protein sequences affect 
differently protein functions. However, this is not 
reflected in the match/mismatch dichotomy used in 
N&W. This was addressed by customising mismatch 
costs according to estimated rates of mutations 
between pairs of characters (Dayhoff, 1978) and 
(Henikoff & Henikoff 1992). Although it would be 
possible to perform a statistical study to establish the 
mutation frequency between pixel values, here we 
use a linear model which is context independent. 
The mismatch penalty of aligning a pair of pixels, 
where pi and pj are their values, is expressed by the 
absolute value of their difference, so that extending 
an alignment along the diagonal alters the global 
score by: 

����� � |�� � ��| 
 
In genetics, ‘indels’ are rare and dramatic events 
which usually have negative effect on protein 
functions. Although the N&W can penalise this type 
of mutations by associating them with a higher cost 
than substitutions, it does not take into account that 
an ‘indel’ of n characters is much more likely than n 
‘indels’ of one character. For this reason, the initial 
scoring scheme was completed with a lower penalty 
for extended gaps, egap, which encourages gaps to 
cluster. We believe this concept is also valid in 
stereo matching where one would expect that a few 
occlusions of several-pixel length would be more 
frequent than a large number of 1-pixel occlusions: 
due to the nature of stereo matching, different 
camera viewpoints create occlusion areas associated 
with each object present in a scene. Accordingly, we 
implemented extended gaps in our algorithm. 

As a consequence of these changes, our scoring 
matrix is filled in using the following pseudo-code: 
 
 



 

for i = 1 to length(sequence1) 
{ 
 for j = 1 to length(sequence2) 
 { 
  mismatch = -|IL(line,i) -IR(line,j)| 
  if( M(i-1,j) is a gap ) 
   north <- M(i-1,j) +egap 
  else 
   north <- M(i-1,j) +gap 
  endif 
  diagonal <- M(i-1,j-1) +match +mismatch 
  if( M(i,j-1) is a gap ) 
   west <- M(i,j-1) +egap 
  else 
   west <- M(i,j-1) +gap 
  endif 
  M(i,j) <- max(north, diagonal, west) 
 } 
} 

2.2.2 Backtracking 

The N&W backtracking process is straight forward. 
In the matrix, the cell with the highest score in either 
the last column or the last line of the matrix is 
identified. Then from that cell to the origin of the 
matrix, the global alignment is extracted using the 
stored direction information associated with each 
cell. This process usually produces a set of optimal 
alignments, see Fig. 1. Consequently, new 
information needs to be supplied to allow selecting a 
single solution. In bioinformatics, this is usually 
resolved by providing additional alignments 
involving other related sequences. They are used to 
produce a single multiple alignment which optimises 
all pair-wise alignment constraints (Higgins, et al., 
1994), (Notredame, et al. 2000), (Edgar, 2004) and 
(Lassmann & Sonnhammer 2005).   

Several strategies have been offered to deal with 
this issue in the context of stereo matching. Many 
suggest selecting the ‘smoothest’ solution in term of 
horizontal and vertical discontinuities along and 
across scanlines (Cox, et al., 1996) and (Bobick & 
Intille 1999). Some are based on high confidence 
matches, such as edge intersections, which are 
identified during a pre-processing phase. These good 
matches are exploited as extra constraints in the 
choice of a unique solution (Bobick & Intille 1999) 
and (Torr & Criminisi 2004).  

In this work, we follow the traditional 
bioinformatics approach. The general principle is 
that each scanline can be seen as a mutation of both 
the previous and the following lines. Therefore, 
alignments involving these lines can be used to 
select among several solutions by enforcing some 
vertical discontinuities.  

However, this approach is only valid if those 
lines are, indeed, mutations of the scanline of 

interest. Since usage of a neighbouring line does not 
ensure that the scanlines are related – there may be a 
horizontal edge -, we impose that the pixel 
sequences used as constraints are composed of the 
mean values between the scanline and neighbouring 
line pixels. For instance, in addition to the alignment 
between the scanline, i, on the left image (li) and its 
corresponding line on the right one (ri), we can 
calculate a constraining alignment between li and the 
average between ri and ri+1. Those solutions present 
in both alignments are more likely to be a correct 
solution. Following this reasoning, using all 
combinations between (li), (li+li+1), (li-1+li), (li-
1+li+li+1), and (ri), (ri+ri+1), (ri-1+ri), (ri-1+ri+ri+1), and 
reading scanlines from right to left, a total number of 
32 constraints are generated.  

In practice, in order to reduce the added 
computational cost of this strategy, we generate only 
constraining alignments for the subsections of 
scanline pairs which display several optimal 
correspondences, see Fig. 1. Then, for a given 
subsection, each initial solution is scored according 
to the number of constraining alignments which 
reach the same solution. The solution with the 
highest number of votes is selected. In the case of a 
draw, it is chosen at random.  

 

 

Figure 1: Paths returned for a pair of scanlines. Colours – 
legend given in the bottom left- show valid direction(s) 
which can be followed to produce an optimal alignment. 
Zoom on an area with alternative paths is provided in the 
top right of the figure.  

2.2.3 Scope 

Traditional stereo matching algorithms are applied 
on rectified pair of images which share a ‘sufficient’ 
amount of overlap. To our knowledge, no 
statistically reliable study has quantified that 



 

amount. Since we use a bioinformatics-inspired 
framework, we propose to get an insight about this 
by investigating the confidence which is given to 
protein alignments according to the amounts of 
overlap and mutations.  

Due to the availability of protein sequences, e.g. 
more than 20 million entries in UniProt (Leinonen, 
et al., 2004), and its usage in major international 
projects such as the Human Genome Project 
(International Human Genome Sequencing 
Consortium, 2001), the validity of sequence 
alignments have been the subject of statistical and 
experimental studies (Karlin & Altschul 1990),  
(Pearson, 1998) and (Rost, 1999). Those statistics 
were integrated in the main sequence alignment 
servers (Altschul, et al., 1997) and (Mackey, et al., 
2002). The outcome of these studies can be 
illustrated by the graph produced by Rost (Rost, 
1999), where alignment meaningfulness is expressed 
according to the number of characters which can be 
aligned (i.e. overlap) and the percentage of 
characters with identical values (see Fig. 2). 

 

 
Figure 2: Expression of protein alignment meaningfulness 
according to the number of characters which can be 
aligned (i.e. overlap) and the percentage of characters with 
identical values, adapted from (Rost 1999) 
 
In this paper, we propose to produce such a curve for 
stereo pair images and infer from it if alignments are 
meaningful. 
 
3 RESULTS 

3.1 Experimental setup 

In order to validate our algorithm, experiments are 
conducted using the benchmarking framework from 
Middlebury (Scharstei et al. 2002-2003), which has 
been largely accepted by the computer vision 
community for objective comparison of stereo 
matching algorithms. 

When several optimal solutions are returned by 
our algorithm, the selection of a unique solution is 
achieved by applying the 32 different constraints 
imposing scanline continuity. Finally, when 
specified, disparity maps are post-processed by a 
median filter (MF), which has been shown as a 
powerful and simple way to improve results 
(Mühlmann, et al., 2002). 

3.1.1 Automatic parameter configuration 

First score parameters, i.e. match, gap and extended 
gap, must be configured. Since they are sensitive to 
image characteristics, they need to be customised for 
each stereo pair. If the actual disparity map is 
known, an optimisation function can be applied to 
maximise matching accuracy. Although such 
process allows evaluating the best possible 
performance of an algorithm, it does not have 
practical applications.  

Therefore, a methodology for automatic 
parameter configuration is required. We propose to 
generate a pseudo ground truth disparity map by 
establishing sparse pixel correspondences using the 
SIFT algorithm (Local Invariant Feature Transform). 
Key points on corresponding scanlines are paired 
and used to calculate disparity values (code available 
at www.cs.ubc.ca/~lowe/keypoints/). However, 
since only a few pairs are detected (fewer than 100 
for images from the Middlebury dataset), this initial 
set is not suitable for parameter optimisation. In 
order to increase this number, Delaunay 
triangulation is applied to estimate the disparity of 
more pixels (see Fig. 3). Using the key points as 
vertices, homographic transformations between both 
meshes can be calculated for each triangle. These 
transformations are then used to estimate a larger set 
of disparity values.  Obviously, this approximation 
can only be considered as valid for small triangles: 
in this work, only triangles whose sides are shorter 
than 15 pixels are used. As Table 3 shows, those 
disparity values are very accurate since they have an 
average pixel error below 0.5. Consequently, such 
disparity maps can be considered as ground truth 
and used for parameter optimisation. 
 
Table 3: Automatic ground truth generated for parameter 
configuration and its estimated error. 
 

# of disparity 
points 

Average 
error 

Cones 657 0.36 
Teddy 190 0.46 
Venus 211 0.27 

Tsukuba 600 0.45 



 

Figure 3: Delaunay triangulation of left and right images 
using the generated pairs of key points. 
 
3.2 Performances 

3.2.1 Stereo-pair correspondences 

Fig. 4 shows raw disparity maps, i.e. without 
smoothing, obtained for the images used in the 
Middlebury framework. In Table 
results are provided to validate our
table quantifies the introduction of extended gaps
(EG) and the procedure for automatic parameter 
selection (AP). In addition performances are 
provided for state of the art methods:
for scanline-based DP (Bobick & Intille 1999)
based DP which addresses inter-scanline coherence
in the optimisation process (Veksler, 2005) and 
(Deng & Lin 2006), and a segment
matcher (Klaus et al. 2006). 
 

Figure 4: Disparity maps

When optimising parameters using the ground truth 
disparity map as other methods do, in its most 
advanced configuration (i.e. our approach +EG 
+MF) the proposed framework outperforms 
Bobick’s (Bobick & Intille 1999
terms of accuracy it cannot compete with the more 
computationally expensive approaches, ours could 

 
of left and right images 
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Disparity maps. 

When optimising parameters using the ground truth 
disparity map as other methods do, in its most 

r approach +EG 
+MF) the proposed framework outperforms 

Bobick & Intille 1999). Although, in 
terms of accuracy it cannot compete with the more 
computationally expensive approaches, ours could 

operate in real time as shown b
2010).  

Analysis of Table 4 confirms that the 
of extended gaps suits the nature of 
performances are significantly improved
as expected, the application of a 
disparity maps, which introduce
scanline coherence, increases accuracy
results obtained using the AP configuration 
demonstrates that, although performances are 
degraded compared to those produced by a system 
using optimal parameters, they are still 
For example, our approach outperforms 
(Bobick & Intille 1999) in 3 image pairs out of 4. 

 
Table 4: Performance comparison

EG: with extended gaps
AP: with automatic parameter selection

MF: with median filter

% Tsukuba 

(non occ) 

Venus 

(non occ) 

Klaus et 
al. 2006 1.11 0.11 

Veksler 
2005 1.99 1.41 

Deng & 
Lin 2006 2.21 0.46 

Bobick & 
Intille 
1999 

4.12 10.1 

Our 
approach 6.67 12.0 

Our 
approach 

+EG 
6.74 10.7 

Our 
approach 

+EG 
+MF  

4.63 7.40 

Our 
approach 
+AP +EG 

+MF 

7.61 7.87 

These results confirm the validity of the analogy 
made between stereo matching and protein sequence 
alignment.  

3.2.2 Stereo matching meaningfulness

Following the efforts of Rost (Rost 1999) 
experimentally defined a curve under which protein

operate in real time as shown by (MacLean, et al., 

Analysis of Table 4 confirms that the inclusion 
of extended gaps suits the nature of occlusions since 
performances are significantly improved. Moreover, 
as expected, the application of a median filter on 

introduces some inter-
es accuracy. Finally, 

sing the AP configuration 
demonstrates that, although performances are 
degraded compared to those produced by a system 
using optimal parameters, they are still satisfactory. 

r approach outperforms Bobick’s 
) in 3 image pairs out of 4.  

Performance comparison. 
EG: with extended gaps 

AP: with automatic parameter selection 
MF: with median filter 

Teddy 

(non occ) 

Cones 

(non 

occ) 

All 

(bad 

pixels) 

4.22 2.48 4.23 

15.9 10.0 11.7 

9.58 3.23 6.82 

14.0 10.5 14.2 

15.5 12.7 18.6 

14.1 11.0 16.7 

10.7 7.75 13.4 

10.8 8.59 14.9 

confirm the validity of the analogy 
made between stereo matching and protein sequence 

meaningfulness 

Following the efforts of Rost (Rost 1999) who 
experimentally defined a curve under which protein 



 

alignment may become meaningless (see Fig. 2), we 
have produced a similar graph plotting accuracy as a 
function of image overlap and pixel similarity to 
express the meaningfulness of matching an image 
pair. 

In this section, we consider that the alignment 
between two scanlines L and R is meaningful if the 
optimal score obtained for this alignment according 
to the scoring matrix is the highest score that L can 
achieved against any scanline of the right image. 

In the original paper by Rost, results were plotted 
in a graph showing the number of residues aligned 
versus the percentage of character similarity. In our 
particular case, we can assimilate the number of 
aligned characters as the number of pixels matched 
between the images, or equivalently, the percentage 
of overlap between the images. Regarding the 
second axis, it can be understood as the percentage 
of identical pixels existing between both images. 

 

Figure 5: Scanline correspondence errors according to 
overlap and pixel similarity. Red dots show where 
matching experiments between an image and its zoomed 
version (from 2x to 5x) would fit on this graph. 

Unlike in bioinformatics, pixel value changes have a 
continuous nature, Consequently, the estimation of 
pixel similarity between a pair of stereo images 
would depend on a threshold. In order to have an 
absolute control of all variables, the conditions of 
the matching experiments were simplified. Our 
algorithm was applied to match an image with a 
tranformed version of itself.  Pixel identity was 
controlled by adding ‘salt and pepper’ to the image, 
while the percentage of overlap was simulated by 
removing the required number of pixel columns. On 
Fig. 5, points are connected according to the 
measure accuracy in terms of percentage of 
scanlines matching the correct scanlines (see Fig. 6). 
Thus, a set of curves were created highlighting the 
image pair characteristics required to obtain 
matching errors between 6% and 40%. As expected 

the shape of these curves is very similar to Rost’s 
(Fig. 2), which reinforces the value of our analogy 
between stereo matching and protein sequence 
alignment. As in Rost’s case, we believe the graph in 
Fig. 5 can estimate the meaningfulness of stereo 
correspondences using image overlap and the 
number of identical pixels as parameters. 

In order to test this hypothesis, we propose to 
predict the outcome of matching image pairs 
captured at different resolution. On Fig. 5, we have 
plotted in red the estimated overlap and pixel 
similarity between images where the second one was 
taken with a zoom of 2x, 3x, 4x and 5x. Using the 
predictive accuracy suggested by the curve set, one 
can infer that matching with 2x or 3x image should 
provide meaningful results, whereas results obtained 
for pairs including a 4x or 5x zoomed image should 
be meaningless. These predictions are tested in the 
next section.  

3.2.3 Matching images captured at different 
resolutions 

First, to evaluate the predictions made from the 
meaningfulness graph, the ‘cone’ image and its 
zoomed versions were processed using our 
algorithm. Here, the extended gap feature is 
deactivated since the assumption it is based on is not 
valid when dealing with images captured at different 
resolutions. Each scanline of the standard image was 
aligned against all scanlines of the zoomed image. 
The alignment with the highest score in the scoring 
matrix is then automatically selected to determine 
matching scanline pairs. 

Fig. 7 shows the results of this procedure for 
different zoom values. As expected, the 
performances worsen with zoom increase. In the 
case of x2 and x3 zooms, correspondences between 
lines are usually correct or shifted by only a few 
lines, correlations between actual and predicted 
corresponding scanlines are 0.997 and 0.643 
respectively. However, matching using x4 and x5 
zooms produce associations which are often 
meaningless as quantified by the calculated 
correlations, i.e. 0.495 and 0.209 respectively. These 
experimental results confirm the predictions 
formulated using the meaningfulness graph. 

Although finding meaningful correspondences 
between lines is essential for accurate stereo 
matching, it is not sufficient to assess the quality of 
pixel matching itself. Consequently, we undertook a 
second experiment where we calculated pixel 
correspondences between the left and the right 
images of the ‘cone’ stereo pair, where the right 



 

image was subject to a zoom transformation. Here, 
we assume that line pairings between the left and 
right images are known. In practice, if dealing with 
static cameras, this can be calculated if the zoom 
ratio is known. Otherwise, the procedure described 
in the previous experiment can be used to initialise a 
line pairing optimisation algorithm. Colour images 
in Fig. 6 show pairs of images, i.e. a) and b) where 
the lines of the left image were removed so that both 
images have the same number of scanlines. Images 
c) and d) display calculated and actual disparity 
maps. In agreement with the previous experiment, 
only usage of x2 and x3 zooms produces meaningful 
results, even if, in the case of x3 zoom experiment, 
the accuracy is poor.   

 

 

 

  

 

 

 
Figure 6: a) Left and b) right images used for zoom x2, x3, 
x4 and x5, c) corresponding computed and d) ground truth 
disparity maps 

 

4 Conclusions 

The main contribution of this paper resides in the 
exploitation of the analogy between protein 
sequence alignment and image pair correspondence 
to design a bioinformatics-inspired framework for 
stereo matching based on dynamic programming. 
Not only does this approach offer accurate results 
with an algorithm which is suitable for real-time 
implementation, but it motivated the creation of a 
meaningfulness graph, which helps to predict 
matching validity according to image overlap and 
pixel similarity. This graph led to the application of 
the proposed method to the unexplored scenario of 
stereo matching between images captured at 
different resolutions. Experimental results reveal 

that good performance can be obtained when there is 
a ratio of 2 between the resolutions of a pair of 
images.   

Another contribution of this work is an automatic 
procedure to estimate automatically all matching 
parameters. Conducted experiments showed that 
high quality sparse pixel correspondences generated 
by the SIFT algorithm could be extended using a 
Delaunay triangulation approach to generate a 
partial disparity map suitable for parameter 
optimisation. 

In future work, we intend to exploit further the 
computer vision/bioinformatics analogy by 
considering video frames as leaves of a phylogenetic 
tree.  
  

 
Figure 7: Correspondences between lines on the standard 
and zoomed images for zooms of a)2x, b)3x, c)4x and 
d)5x: calculated (red) and ground truth (blue). 

REFERENCES 

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., 
Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped 
BLAST and PSI-BLAST: a new generation of protein 
database search programs. Nucleic Acids Research, 25, 
pp.3389-3402. 

Baker, H., Binford, T., 1981. Depth from edge and 
intensity based stereo. In IJCAI81, pp.631–636. 

Belhumeur, P.N., 1996. A Bayesian approach to binocular 
stereopsis. International Journal of Computer Vision, 
19(3), pp.237–260. 

Bobick, A.F., Intille, S.S., 1999. Large occlusion stereo. 
International Journal of Computer Vision, 33(3), 
pp.181–200.  

Cox, I.J., Hingorani, S.L., Rao, S.B., Maggs, B. M., 1996. 
A maximum likelihood stereo algorithm. Computer 
Vision and Image Understanding, 63(3), pp.542–567. 

Dayhoff, M.O., Eck, R.V., Chang, M.A., Sochard, M.R., 
1965. Atlas of Protein Sequence and Structure 1965, 
National Biomedical Research Foundation, Silver 
Spring, Maryland. 



 

Dayhoff, M.O., 1978. Atlas of Protein Sequence and 
Structure, Suppl 3, National Biomedical Research 
Foundation, Silver Spring, Maryland. 

Deng, Y., Lin, X., 2006. A fast line segment based dense 
stereo algorithm using tree dynamic programming. In 
European Conference on Computer Vision, Graz, 
Austria, May 7 - 13, 2006. 

Edgar, R.C., 2004. MUSCLE: a multiple sequence 
alignment method with reduced time and space 
complexity. BMC Bioinformatics, 5, pp.113. 

Forstmann, S., Kanou, Y., Ohya, J., Thuering, S., Schmitt, 
A., 2004. Real-Time Stereo by using Dynamic 
Programming, In Computer Vision and Pattern 
Recognition Workshop, Washington, DC, USA, 27 
June-2 July 2004. 

Geiger, D., Ladendorf, B., Yuille, A., 1992. Occlusions 
and binocular stereo. In European Conference on 
Computer Vision, pp.425–433. 

Henikoff, S., Henikoff, J., 1992. Amino acid substitution 
matrices from protein blocks. Proceedings of the 
National Academy of Sciences, 89, pp.10915-10919. 

Higgins, D., Thompson, J., Gibson, T., Thompson, J.D., 
Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: 
improving the sensitivity of progressive multiple 
sequence alignment through sequence weighting, 
position-specific gap penalties and weight matrix 
choice. Nucleic Acids Research, 22, pp.4673-4680. 

International Human Genome Sequencing Consortium, 
2001. Initial sequencing and analysis of the human 
genome. Nature, 409, pp.860-921. 

Karlin, S., Altschul, S.F., 1990. Methods for assessing the 
statistical significance of molecular sequence features 
by using general scoring schemes. Proceedings of the 
National Academy of Sciences, 87, pp.2264-2268. 

Klaus, A, Sormann, M, Karner, K, Segment-based stereo 
matching using belief propagation and a self-adapting 
dissimilarity measure, ICPR 3, pp. 15–18. 

Lassmann, T., Sonnhammer, E.L.L., 2005. Kalign - an 
accurate and fast multiple sequence alignment 
algorithm. BMC Bioinformatics, 6, pp.298. 

Lazaros, N., Sirakoulis, G.C., Gasteratos A., 2008. Review 
of Stereo Vision Algorithms: From Software to 
Hardware. International Journal of Optomechatronics, 
2(4), pp.435 – 462. 

Leinonen, R., Diez, F.G., Binns, D., Fleischmann, W., 
Lopez, R., Apweiler, R., 2004. UniProt Archive. 
Bioinformatics, 20, pp.3236-3237. 

Mackey, A.J., Haystead, T.A., Pearson, W.R., 2002. 
Getting more from less: algorithms for rapid protein 
identification with multiple short peptide sequences. 
Molecular and Cellular Proteomics, 1(2), pp.139-147. 

MacLean, W.J., Sabihuddin, S., Islam, J., 2010. 
Leveraging cost matrix structure for hardware 
implementation of stereo disparity computation using 
dynamic programming. Computer Vision and Image 
Understanding, In Press. 

Mühlmann, K., Maier, D., Hesser, J., Männer, R. 2002. 
Calculating Dense Disparity Maps From Color Stereo 
Images, An Efficient Implementation. International 
Journal of Computer Vision, 47(3), pp.78–88. 

Needleman,  S.B., Wunsch, C.D., 1970. A general method 
applicable to the search for similarities in the amino 
acid sequence of two proteins. Journal of Molecular 
Biology, 48(3), pp.443–53. 

Notredame, C., Higgins, D., Heringa, J., 2000. T-Coffee: 
A novel method for multiple sequence alignments. 
Journal of Molecular Biology, 302, pp.205-217. 

Ohta, Y., Kanade, T., 1985. Stereo by intra- and 
interscanline search using dynamic programming. 
IEEE TPAMI, 7(2), pp.139–154. 

Pearson, W.R., 1998. Empirical statistical estimates for 
sequence similarity searches. Journal of Molecular 
Biology, 276, pp.71-84. 

Rost, B., 1999. Twilight zone of protein sequence 
alignments. Protein Engineering. 12(2), pp.85-94. 

Salmen, J., Schlipsing, M., Edelbrunner, J., Hegemann, S., 
Lueke, S., 2009. Real-time stereo vision: making more 
out of dynamic programming. In International 
Conference on Computer Analysis of Images and 
Patterns, Münster, Germany, Sept. 2-4, 2009. 

Scharstein, D., Szeliski, R, 2002. A taxonomy and 
evaluation of dense two-frame stereo correspondence 
algorithms. International Journal of Computer Vision, 
47(1), pp.7-42. 

Scharstein, D., Szeliski, R, 2003. High-accuracy stereo 
depth maps using structured light. In IEEE Computer 
Society Conference on Computer Vision and Pattern 
Recognition (CVPR 2003), vol. 1, pp. 195-202, June 
2003. 

Torr, P.H.S., Criminisi, A., 2004. Dense stereo using 
pivoted dynamic programming. Image and Vision 
Computing, 22(10), pp.795-806. 

Veksler, O., 2005. Stereo correspondence by dynamic 
programming on a tree. In Computer Vision and 
Pattern Recognition, San Diego, CA, USA, 20-26 
June 2005. 

Wang, L., Liao, M., Gong, M., Yang, R., Nistér, D., 2006. 
High-quality real-time stereo using adaptive cost 
aggregation and dynamic programming. In 3D Data 
Processing, Visualization and Transmission. Chapel 
Hill, USA, June 14-16, 2006. 

 


