
Databases and the Web – Exercise 4

CO3041 Wednesday, 10 October 2012
1

his week we’ll begin to develop some pages that pass information and

act upon that information.

Following ex’s 1–3 you should know how to back-up and recreate a database using

phpMyAdmin & understand the structure and relationships between the three world

tables.

From now on you’ll be creating PHP pages on your PCs for use on StudentNet (or on your

own machine with a localhost).

Task 1: Practice with PHP & a little debugging ;-)

1) Create a page on the PC that includes an HTML form, say “week4form.html”, containing

a submit button & a couple of named elements:

♦ E.g. a text field:
<input type="text" name="textField" />

♦ and a pair of check-boxes, e.g.
Yes
<input type="checkbox" name="checkbox" value="yes" />

No
<input type="checkbox" name="checkbox" value="no" / >

2) Make the form’s action attribute point to another page, say “week4form.php”.

3) Create the “week4form.php” page in the same directory. Within it:

a) Write out the contents of the $_POST and $_GET arrays using the print_r PHP

function – look it up! (http://uk.php.net/manual/en/function.print-r.php)

♦ If you wrap the function inside an HTML <pre> tag you can guarantee that the

output displays as-is on the web page (otherwise HTML merges white-space.)

b) Beneath that (on the same page)

♦ connect to your StudentNet database,

♦ execute a “SELECT * ” query on e.g. the country table (use LIMIT to return

just the 1st row),

♦ extract the 1st row into an array using one of

(1) mysqli_fetch_row

(2) mysqli_fetch_assoc

(3) mysqli_fetch_object

(or their PDO or mysql_ equivalents) and display the data using print_r.

4) Browse to the HTML page, experiment with the form settings and view the result in the

PHP page…

This should (a) show you how useful “print_r” and <pre> are for examining the contents

of complex datatypes and (b) hint at what happens when data are passed from a form to

PHP … more on that next week!

T

Databases and the Web – Exercise 4

CO3041 Wednesday, 10 October 2012
2

Task 2: Listing countries by continent

This exercise is a simple example of the use of XHTML form elements and PHP’s database

connectivity functions. In this exercise you will create a web page on which you can select a

continent from a list and then press a button to be taken to a page that lists all the countries

in that continent.

An example page is here:

http://staffnet.kingston.ac.uk/~ku13043/WebDB/ex/week04/ex1a.php

1. Create a PHP page to list the Continents from your world database as follows:

a) Create a valid HTML4/5 or XHTML page in your “public_html” directory (on

SUSE) or “www” on StudentNet.

(i) Name it week4task1_1.php

(ii) Use an appropriate DOCTYPE.

(iii) Ensure it has it an appropriate <title> and a level 1 heading that describes

its purpose.

b) Inside that page add the PHP necessary to:

(i) Connect to the MySQL DBMS.

(ii) Use your database.

(iii) Query the database for a list of unique continent names in alphabetical order.

c) Add a form to the page that uses the GET method and whose action attribute

points to the next file you will create (in step 2 below) that processes the form

submission.

♦ E.g. week4task1_2.php

d) Inside the form write PHP that:

(i) Writes a radio button into the page for each continent by combining the

following within a for or while loop:

♦ To group the radio buttons they all need a name attribute,

e.g. <input type="radio" name="Continent" />

♦ To associate the continent name with the button it’s not sufficient to

only have a <label> . Each radio button needs its value attribute

set to the continent name,

e.g. <input type="radio" value="Asia" />

♦ To label the radio buttons so that the label works in Internet Explorer

they each need a unique id attribute,

e.g. <input type="radio" id="c0" /> goes with
 <label for="c0">

Databases and the Web – Exercise 4

CO3041 Wednesday, 10 October 2012
3

(ii) For each continent, write into the page a continent name using <label>

tags and the unique id above to associate the label with the appropriate

button.

(iii) Finally add a submit button, e.g.

♦ <input type="submit"
 value="View countries"
 name="submit"
/> ensures that the $_GET array contains an entry like

('submit' => 'View countries')

Verify that it works as expected using a modern browser & IE ;-)

• Do you get a list of buttons and continents?

• Can you click on the <label> next to the radio button to select it?

• If you press “submit”, does it go somewhere?

2. Create the destination for the previous page’s form (the file listed in its action

attribute) as follows:

a) Again, create a valid page with a title and heading.

(i) Add the continent name to the heading as in the example.

b) Write HTML that opens an unordered list.

c) Write PHP within the page that:

(i) Connects to your MySQL DBMS on StudentNet.

(ii) Uses your database.

(iii) Queries the database using the supplied continent name and retrieves all of

the country names for that continent

♦ E.g. $_GET['Continent']

♦ Retrieve only the country name.

♦ NB copy/paste is your friend! (Ctrl-Ins/Shift-Ins or Ctrl-
C/Ctrl-V)

(iv) Write each retrieved name as a list item .

d) Write HTML that closes the unordered list.

♦ E.g. you end up with something like:

 <?php
 while ($arr=mysqli_fetch_row…) {
 /* …code… */
 }
 ?>

Databases and the Web – Exercise 4

CO3041 Wednesday, 10 October 2012
4

♦ Can you arrange it so that the list items are indented by one tab and

appear on separate lines in the HTML source?

(It makes the HTML easier to read…)

e) For debugging purposes you might like to add the following code to the bottom of

your HTML page:

<h2>Debugging: See what $_GET contains</h2>
<pre> <?php print_r($_GET); ?></pre>

This dumps the contents of the $_GET array into a preformatted HTML block so

you can easily see what your form is sending to the page…

You could easily adapt this two page methodology to a single page that contains the form

and the code to process it, using a branch like

if ($_GET['submit']!='View countries') {

 /* HTML FORM stuff */
} else {
 /* PHP FORM processing stuff */
}

3. Try it!

a) Save a copy of your first file as e.g. week4task1_3.php

b) Add the if test to the appropriate place.

c) Modify the form so its action attribute points back to the same page using

PHP_SELF (see the week 4 lecture slides.)

d) Copy/paste the code from week4task1_2.php inside the else clause.

e) Verify it works – when you submit the form the same base URL should remain in

the browser location bar with the GET request query string appended.

f) Finally change week4task1_3.php so that it uses POST instead of GET.

♦ Now when you submit the form there should be no query string.

Bookmarks will not work but the data are ever-so slightly more

secure…

4. Back-up your work!

Task 3: Listing countries and language by continent

This exercise builds on “Task 2” and the queries you have already written to list the

countries and their languages for a given continent. An example page is here:

http://staffnet.kingston.ac.uk/~ku13043/WebDB/ex/week04/ex2.php

1. Take a copy of your week4task1_3.php and name it week4task2.php

2. Modify the query so that it returns the joined contents of Country and

CountryLanguage for the chosen continent.

a) This is similar to a query from exercise 3.

Databases and the Web – Exercise 4

CO3041 Wednesday, 10 October 2012
5

b) Arrange the query so that the data are ordered by country name, the

official/unofficial status of the language and then the language name.

3. Initially (for simplicity’s sake!) list the data in a single list like:

♦ Algeria, Arabic, T

♦ Algeria, Berberi, F etc. (for Africa.)

4. Once that’s working for every continent, including a sensible error message for

Antarctica ☺, can you arrange it so that:

a) Each country appears as a separate heading or unordered/definition list item,

inside of which is a (nested) list of spoken languages?

b) The official language(s) are highlighted in some way?

♦ You could use a neat CSS trick here so that, for example, “Gibraltar:

English, Arabic” is marked-up something like this:

Gibraltar

 <li class="T">English
 Arabic

With CSS rules like:

li li {font-weight:normal;}
li li.T {font-weight:bold;}

Extra time?

If you have extra time and want to occupy your mind ;-) you could:

1. Experiment by using a <select> drop-down list instead of the radio boxes.

2. Allow for multiple check boxes or selections so that you might list countries from

more than one continent.

