
Databases and the Web – Exercise 7

CO3041 Monday, 14 November 2011 1

his week the lab class time will be given over to in-class test 1 but

you should devote some of your self-study time to working on this
exercise too. Here we’ll start developing pages that pass information

and act upon that information. For starters we’ll simply add a new city
to the world database.

Outcomes:
When you’ve finished this exercise you should:

• Understand how data are passed to-and-fro between the client and server.

• Be able to write PHP to create a form, process the form and update the user.

• Have written some server-side validation code and understand the use of client-side

validation.

Debugging: Because PHP is server-side you must check your code in the browser through

the web server “http://...” not by loading the page as “file://”! It is a good idea to:

i. Open the PHP page in the browser (http://localhost/~linux/… or

http://studentnet/~kxxxxxxx/...)

ii. Make small changes to code.

iii. Save the file (upload to StudentNet if necessary).

iv. Refresh the page in the browser.

v. Fix any reported syntax errors.

vi. Test the changes.

Repeat ad nauseum. (Get used to using Alt-Tab to cycle through windows ☺)

Task 1: Create a page to enter information about a new city
Create something that has elements like this example page that will (by Task 3!) allow you

to add a new city to the world database city table.

1. Create a PHP page that has a title and all the usual stuff.

2. Add a form that uses the POST method & whose action attribute refers back to the

same page.

3. Inside the form add input tags for the necessary fields from the city table.

• Make sure they have <label>s, name and appropriate maxlength attributes.

• Question: Do you need to allow the city ID to be entered?

4. Add an appropriate tag to enable the user to select the country in which the city

belongs.

• Hint: while loop and select/option elements?

• This is most important bit of the whole page – you must maintain the relationship

between the city and country tables.

• Since this is PHP and it’s preparing the HTML page on the server it is fairly easy to

query the country table and use it to list all possible country names and their

T

Databases and the Web – Exercise 7

CO3041 Monday, 14 November 2011 2

codes. Remember: it’s the foreign key that this page needs for any INSERT

operation into city but the user does not care about the code, just the name.

5. Add a submit button.

6. Now is a convenient time to test the page.

• Make sure you view the source in your browser and then use e.g. “\t” and “\n” to

make the fields more legible … it consumes some bandwidth but makes debugging

the output from your PHP so much easier…

• Write out the contents of the $_POST array, e.g. something like the following:

� <div id="debug">
 <pre><?php print_r($_POST); ?></pre>
</div>

• After you submit data you should see it echoed in the $_POST array.

Task 2: Validate the data entered
Before you get around to accidentally corrupting your database with invalid data, validate

the fields in PHP (server-side).

NB: This is the complex programming part so make sure you understood the examples from

the week 5-7 slides.

It will be helpful to (eventually) use regular expressions for validation but for now it’s

sufficient to simply check the length of the entered data fields using the PHP function strlen

(the logic is the same, it’s just the validation test that can develop.)

You could simplify the code by storing validation results in, e.g. an array like

$validField['fieldName']=TRUE; which you can then use to first decide if the whole

form is valid and then at each input element decide whether or not an error needs to be

signalled.

1. City names should be no more than 35 letters.

2. District names should be no more than 20 letters.

3. Population should be non-negative numeric values.

4. Country codes are exactly 3 capital letters.

• Question: Why should you validate the submitted country code?

5. Data entered should be put back into the input fields if the form was incomplete.

• Truncate strings appropriately.

• Make any chosen country code the default (country).

6. Invalid data should be signalled in some way by writing an error message to the page

and highlighting the invalid fields.

• An ideal use for CSS classes – you could add an “error” class to the invalid input

elements and use CSS to specify some special style for the dodgy data.

E.g using echo.

<input type="input" name="name"

Databases and the Web – Exercise 7

CO3041 Monday, 14 November 2011 3

<?php

 if (!$validField['name']) echo ' class="error"';
 if ($_POST['name']) echo ' value="' .
 $_POST['name'] . '"';
?>
/>

E.g. using “printf”

<input type="input" name="name"
<?php

 if (!$validField['name']) echo ' class="error"';
 if ($_POST['name'])
 printf(" value=\"%s\"", $_POST['name']);
?>
/>

Task 3: Insert into your database
This is easy but should only happen once all the fields contain valid data.

1. Build an SQL query string like

$sql = 'INSERT INTO City '
 . '(Name,CountryCode,District,Population) VALUES ('

 . mysql_real_escape_string($_POST['city']) … etc.

2. Execute the query with mysql_query … etc.

3. Check the INSERT by verifying how many rows were affected with

mysql_affected_rows … etc.

4. Give an error or success message, as appropriate.

5. Test it! Add something like the city of “Ankh Morpork”, population 1 million souls that

is situated in the “Sto Plains” district in a country of your choice ☺

Extra Task: (For next week’s too) Client-side validation
Implement a simple client-side validation scheme using JavaScript.

