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Research Highlights

A Bag of Expression Framework for Improved Human Action Recognition

In this paper, we introduce what we call a Bag of Expression (BoE) framework, based on bag of'words method, for recog-
nizing human action in simple and realistic scenarios.

e Bag of Expression (BoE) improves on Bag of Words method for Human Action Recoghition

e BoE is able to represent spatio-temporal contextual relationships between 'words

Class-specific dictionary learning uses such relationships

BoE enables some degree of view independence and some tolérance to occlusion

BoE outperforms BoW using both simple and complex publiesbenchmark datasets
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ABSTRACT

The Bag of Words (BoW) approach has been widely used for human action recognition /in recent
state-of-the-art methods. In this paper, we introduce what we call a Bag of Expression (BoE) frame-
work, based on the bag of words method, for recognizing human action inssimple and realistic sce-
narios. The proposed approach includes space time neighborhood information,in“addition to visual
words. The main focus is to enhance the existing strengths of the BoWiapproach like view inde-
pendence, scale invariance and occlusion handling. BOE includes independent pairs of neighbors for
building expressions, therefore it is tolerant to occlusion and capable of handling view independence
up to some extent in realistic scenarios. Our main contributien includes learning a class specific vi-
sual words extraction approach for establishing a relationship ‘between these extracted visual words
in both space and time dimension. Finally, we have carried out a set of experiments to optimize dif-
ferent parameters and compare its performance with recent state-of-the-art-methods. Our approach
outperforms existing Bag of Words based approaches, when evaluated using the same performance
evaluation methods. We tested our approach on four publicly available datasets for human action
recognition i.e. UCF-Sports, KTH, UCF11_and UCF50 and achieve significant results i.e. 97.3%),
99.5%, 96.7% and 93.42% respectively in.terms of average accuracy.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, human action.ecognition has become an emerg-
ing research topic in the“eomputer vision field. The recogni-
tion and classification/of human actions can play an important
role in video surveillance, scene recognition, human computer
interaction, video indexing and retrieval etc. An effective ac-
tion recognition approach is essential for attaining high recog-
nition accuraey., However, it is still a challenging task to rec-
ognize humansactions in uncontrolled environments subject to
occlusion, background clutter, scale variance, and view inde-
pendence challenges.

The Bag of Words (BoW) approach has shown state-of-the-
art performance in video representation for human action recog-
nition. Using local space time features along with the BoW ap-
proach has proved advantageous for handling realistic dataset

**Corresponding author: Tel.: +34 918 56 1307;
e-mail: sergio.velastin@ieee.org (Sergio A. Velastin)

challenges (Wang et al., 2009; Niebles et al., 2008; Wang et al.,
2016). These methods represent videos in term of local fea-
tures instead of tracking any specific object, therefore they can
be robust to scale invariance, occlusion and viewpoint varia-
tions (Wang et al., 2009). Usually spatio-temporal represen-
tations are obtained using different methods including various
detectors and descriptors such as 3D Harris (Laptev and Linde-
berg, 2003), Cuboid detector (Dollar et al., 2005), Hessian de-
tector (Willems et al., 2008), 3D SIFT (Scovanner et al., 2007),
HOG3D (Klaser et al., 2008) and ESURF (Willems et al., 2008)
followed by video representation such as histogram of feature
occurrence frequency using the BoW method. BoW requires
selecting specific parameters for a sampling strategy i.e. ex-
tracting localized features from a video sample, size of the
code book, quantization, distance function used for in nearest-
neighborhood assignment and classifier. In such video repre-
sentation approaches, recognition performance is highly depen-
dent on the discrimination power of the chosen features (Peng
et al., 2016).



BoW contains information of single visual words but ignores
the spatial contextual information of words. Thus, such video
representation is not able to express contextual relationships be-
tween words, thus limiting overall action recognition accuracy.
To tackle this limitation, we propose a novel approach to rep-
resent words in groups of words that we call expressions, and
integrate the spatio-temporal relationship between words. The
main idea is to preserve the existing strength of classical BoW
and include spatial and temporal information that is usually lost
during word formation, by encoding neighborhoods amongst
words.

(Kovashka and Grauman, 2010) included neighborhoods
amongst words in a classical BoW and obtained state-of-art re-
sults in datasets such as KTH (Schuldt et al., 2004) and UCF-
Sports (Rodriguez et al., 2008). In their work, they have pre-
served the scale invariance capability of the classical BoW, but
there is little capability of handling different viewpoints and oc-
clusions. Another promising work which uses neighborhood
amongst features was proposed by Gilbert et al. (2011). To pre-
serve some scale invariance, the inclusion of neighborhoods re-
quires only the relative position and scale of compound features
to form a spatio-temporal hierarchy. Gilbert et al. (2011) em-
ployed localized neighborhood grouping of features at the ini-
tial stage and the volume of neighborhood was increased in each
hierarchy level to obtain compound features. They explicitly
addressed the problem of scale invariance by using the relative
position and scale of these compound features. In their paper,
they represent each detected interest point by a three digit string
encoding (scale, channel and orientation) and establish neigh-
borhood by encoding relative position of corners in a 3X3X3
grid. This limits their techniques ability to handle variationtin
viewpoints.

Peng and Schmid (2016) proposed a multi-region two stream
CNN (Convolutional Neural Network) scheme based on three
recent methods i.e. two stream CNN, R-CNN and optical flow
stacking and multi-region CNNs. For UCF-Sports.dataset, they
improved recognition performance uSing detection aware fea-
tures and precise action localization, In Abdulmunem et al.
(2016), they extracted features“only,from those video frames
with salient regions and further desctibed them using 3D SIFT
and histogram of oriented optical flow (HOOF) descriptors.

Wang et al. (2013) ¢aptured local motion information using
dense trajectories and 'described these extracted features using
HOG, HOF and point coordinates to characterize appearance,
motion and shape.information respectively. The proposed mo-
tion boundary. histogram descriptors are robust to camera mo-
tion. They tested their approach for KTH, Hollywood2, UCF
Sports, YouTube, Olympic Sports and UIUC action recogni-
tion datasets. The results show that the proposed dense trajec-
tories outperform other trajectory extraction approaches with
KLT tracker or SIFT descriptor matching. However, their ap-
proach is computationally expensive and its performance is lim-
ited by the available optical flow quality. Yang et al. (2015)
represented features using multi-scale oriented neighborhood
features (MONFs), which are formed by concatenating Single-
scale Oriented Neighborhood Features (SONF). They evaluated
their approach on KTH and UCF Sports dataset and stated that
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the proposed method outperforms the local ST features based
method for action recognition. Wu et al. (2011) represented
videos using two types of distribution features, i.e. multiple
Global GMM distribution using relative coordinates between
interest points in local regions and GMM distribution of lo-
cal video appearance. They proposed an augmented feature
multiple kernel learning algorithm (AFMKL) for classification
purposes and tested their approach on UCF-Sports, Multi-view
IXMAS and KTH datasets. Results prove the effectiveness of
AFMKL through the use of pre-learned classifiers from other
action classes. Generally, multiple kernel learing (MKL) meth-
ods assume that training and testing data are from the same fea-
ture distribution and domain (Duan et al., 2012). Therefore,
training data from an auxiliary domain can degrade the perfor-
mance of MKL algorithms in thé target domain. Finally, Ya-
dav et al. (2016) recognized action by,detecting interest points
that captures differential motion information. They show the
discriminative ability of the proposed approach for different ac-
tion classes by analyzing theidistinctness factor of descriptors.
For UCF11, they used temporal localization information for in-
terest point detection and.showed the importance of temporal
localization forwvideo)representation. Further improvement is
needed to make this.approach robust to scale and view invari-
ance.

In this paperswe propose a new approach, Bag of Expression
(BoE)storepresent spatio-temporal contextual relationships be-
tween,words. To improve the handling of view independence
along with scale invariance and occlusion challenges present
in realistic videos, we pair each visual word with a number
of neighbors in the spatio-temporal domain to obtain indepen-
dent visual word pairs. This strategy also aims at providing
tolerance to occlusion as each pair of neighborhood is indepen-
dent. Inclusion of neighborhood information with words sig-
nificantly outperforms state of-the-art results for KTH, UCF-
Sports, UCF11 and UCF50 datasets. We demonstrate (please
see section 3) that our Bag of Expression approach leads to bet-
ter action recognition in both controlled and realistic environ-
ments.

The rest of paper is organized as follows. In section 2 we de-
scribe our proposed Bag of Expression approach. We introduce
the formation of expressions using neighborhood information
between words in addition to learning class specific dictionary.
In section 3 we discuss experiments and results including com-
parisons of our approach with recent state-of-the-art methods.

2. Bag of Expression

The flowchart of our proposed algorithm is shown in fig.1.
For training purposes, the process starts by extracting fea-
tures from labeled videos with unique action class labels as
L={L,;,L,,.....,L;}, where [ is the total number of action classes.
In the next step, we define visual words to generate a visual
expression codebook using the space time neighborhood rela-
tionship between extracted visual words. Occurrences of each
expression are counted to form histogram of expressions. Fi-
nally, BoE based representation of training videos is used to
train a supervised classifier.
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Fig. 1. Novel Bag of Expression framework for human action-recognition.

Similarly, during the testing phase, feature representation is
obtained for unlabeled videos and quantized using the visual
expression codebook created during training. A histogram of
expression is created for the occurrence of every expression for
each testing video which is then passed to the trained classifier
to find the action label. These processes are explained in more
detail in the following sub-sections.

2.1. Feature Extraction

We employ a 3D Harris Interest Point detector (Laptev and
Lindeberg, 2003), an extension of the Harris detector in the
temporal domain, for detection of space time interest point. The
3D Harris Interest point detector has beenradopted/by many re-
searchers to extract sparse local featutes. We use this detector
to obtain interest points that are well localized in the spatio-
temporal domain and corresponds to meaningful events. As
shown in fig.2 (for graphical tepresentation simplicity inter-
est points are shown in the space domain only), spatial interest
points are detected with’a distinetdocation and have large vari-
ation in both space and time dimensions. These interest points
correspond to non-constant~motion in spatio-temporal neigh-
borhood. (Laptev and Lindeberg, 2003) considered a spatio-
temporal second mement matrix, which is a 3x3 dimension
matrix of first order spatio-temporal derivatives, along with a
weighted Gaussian function GG.oi2,72) as previously used in
(Nagel and Gehrke, 1998) for optical flow computation. The
matrix M is defined as:

L2 L., L.,
M:g(:,cr?,rf)*{ L, L2 LI }
LL, L)L, L?

ey

Thus, space time interest points are extracted by detecting
points which have large eigenvalues in the matrix. Note that
in our method we have not adapted detected interest points to

scale and(velocity in order to obtain sufficient number of inter-
est points so. that events can be differentiated from each other
and noisey as in (Laptev and Lindeberg, 2003).

Fig. 2. Detected space time Interest Points on sample videos for UCF Sports
(Diving), UCF11 (Basketball) and KTH (Boxing) dataset.

2.2. Feature Description

Once space-time Interest Points are extracted, they are de-
scribed using the 3-Dimensional Scale Invariant Feature Trans-
form (3D SIFT). 3D SIFT, proposed by Scovanner et al. (2007),
is an extension of SIFT (Lowe, 2004) in 3-dimensions, where,
as it is common in video processing (Gilbert et al., 2011; Ko-
vashka and Grauman, 2010), the third dimension is time. The
presence of occlusions, noise and dynamic background com-
plicates the recognition of actions captured in realistic scenar-
ios. To handle these challenges 3D SIFT provides robustness to
noise and orientation by encoding information in both space
and time domains. To describe an interest point, 3D gradi-
ent magnitude and orientation of its neighborhood are com-
puted, followed by encoding 3D SIFT representation using sub-
histograms. 3D gradient magnitude and orientation is repre-
sented as:

myD = \(L2 + L2 + L) )

0(x,y,1) = tan”! (%) 3)
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0(x,y,t) and ¢(x,y,t) are used to represent 3D gradient orienta-
tions for each pixel. 6(x,y,t) represents angle in 2D gradient
and ¢(x,y,t) represents the angle away from the 2D gradient
directions. Orientation information is accumulated into sub-
histograms, which are created by sampling surrounding sub-
regions of each interest point. The final 3D SIFT representation
is obtained by vectorization of these sub-histograms.

¢(x,y,1) = tan™" )

2.3. Visual Expression Generation
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Fig. 3. Visual expression generation (for clarity we have set N=2 and con-
sidered only 4 visual words).

After feature representation using 3D Harris and 3D
SIFT, each video is represented as V={(x;,y;,t;, p1),(X2,¥2,t2,
D2)seeees (X Ymotms Pm)} Where (xp,yp,t,) is the spatio-temporal
position vector and pj is the 3D SIFT feature representation
of the h* detected interest point and m interest points identified
in video V.

We intend to learn a class specific clustering and, ex=
tract visual words that are most discriminative for a given
action class. We represent a set of obtained features as
F={F|,F5,.....,F;} , where [ is the number ,of unique action
classes and F;={Fi;,Fj,.....,Fin,}, where n; is the-number of fea-
tures obtained for the ith action class.

We then apply the widely used K-means clustering (Jain,
2010) on the obtained set of features to divide the feature set
F into k clusters. Each cluster‘center C, is associated with a
visual word and is denoted as'w,.

The visual word set” W./is Jcomposed of the visual
words from the [ action classes and is represented as
W={W,,...,W,,....,W;},where there are k visual words in the set
W; of each class i{W={W;=W;;, Wp,.....,Wi}).

For each visual word Jrepresentation w;;, we calculate its N
nearest neighbors in.space time domain by calculating a given
distance. We have.considered four different distance measures
for distance calculation: Mahalanobis, Euclidean, Hamming
and City block distances. Our experiments show that the Ma-
halanobis distance measure shows better performance w.r.t the
other three distance measures. For all visual words w € W, the
Mahalanobis distance is calculated as:

Du(Wyj) = v, W) S 10w, W) 5)

where S is the covariance matrix of the two independent vi-
sual words w and W;;. We describe a neighborhood by inde-
pendent pairs of neighbors. Moreover, these selected nearest
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neighbors are paired with the respective visual word indepen-
dently of their relations with the other words. For example,
if there are 10 neighbors for a visual word, each neighbor is
paired with the visual word to obtain ten different descriptors.
This enables some degree of view independence and provides
better tolerance to occlusion as each pair of neighbor is an in-
dependent word containing spatio-temporal features.

To support view independence, we represent every action us-
ing expression and only the frequency of these expressions is
stored. Furthermore, it is used to represent the distribution of
these expressions in the space time domain. This approach re-
sembles that of the Histogramming methods, which is a simple
form to achieve view independence (Weinland et al., 2011). A
Histogramming based approach is,also usediin (Zelnik-Manor
and Irani, 2001) to represent instance distribution in space time
gradient.

Similarly, representing inuthe form of expression, indepen-
dent pair of words, also enables,sonie degree of tolerance to oc-
clusion, as such representation discards all information related
to other words and only considers the relation between respec-
tive words in a pair, it focuses on the individual contribution of
expression and‘enhances its discrimination power in occluded
environment.

As shown in fig.3 each word W; in set W is paired with its N
neighbors andsis represented as expression E; where e;=W;W;.

E = {e11, ern, .., e1n}
E{ = {e21, ex, .., e2n} ©)

Er = {er1,er2..,ern}

r olfs
ki

N »

Kicking_1

=

Fig. 4. Visual expression and STIPs representation (in space domain only)
on the example videos frames of diving, golfswing and kicking actions from
UCF Sports dataset.

These expressions are further grouped together and represented
as a visual expression code book E={E}E,.....Er}, where
Ei={e;jei,......ein} and T is the total number of expressions.
Some visual expression examples are shown in fig.4 for the div-
ing, golf swing and kicking action classes from the UCF-Sports
dataset. In this figure, only the information of space domain
is mapped on sample frames for graphical representation. As
shown in fig.4, expression samples are different with respect to
each action classes and are discriminative enough to differenti-
ate one action class representation from another.

Fig. 4(a) shows the location of STIPs for three videos in each
action class (i.e. diving, golfswing, kicking). These STIPs lo-
cations are shown in the space domain only. Similarly, fig.4
(b) also shows the location of visual expression in the space



domain only, which is the general representation of ’Diving’,
’GolfSwing’ and ’Kicking’ action classes. It might be the case
that visual expression samples seem random (fig. 4(b)) how-
ever, the visual expression representation is not only dependent
on its location (x,y,t) but also on the description of that location
(i.e. feature description using 3D SIFT descriptor). Experi-
mental results suggest that even if two different actions occur in
the same environment, then the visual expression would not be
same as our visual expressions are the representation of actions
and not the environment. As shown in fig.5, the spatio-temporal
interest points are used to represent actions. Although the pres-
ence of unwanted actions in the background can affect visual
expressions, results demonstrate they improve performance in
comparison with other methods.

Fig. 5. Lifting and Diving actions in same environment(STIPs are repre-
sented using red dots).

2.4. Histogram of Expression

Each feature vector f; is mapped to the nearest visual ex=
pression by calculating the Euclidean distance between.an ex:
pression codebook E and the respective feature vector f;\The
histogram of expression is formed by calculating. the occur-
rence frequency of each expression for video V. Each video
V is represented as a histogram of expression and denoted
as EV,={HE | HE>,.....,HET}, where HE;={He;;;He;>,.....,He;y}.
A histogram of expression is shown in"fig.6.for/UCF Sports
dataset for a few action classes. As discussed earlier, class spe-
cific words are generated to form exXpressions. Therefore, each
histogram exhibits some class specific properties. For example,
for the diving class, there ar€ expressions with high frequency
which discriminate its representation from other classes.

Diving Golf Swing Kicking

JJJ Al

Lifting Riding Horse

Ml gl

b

i

Fig. 6. Histogram of Expression for UCF sports action dataset.

2.5. Action Classification

For classification purposes, we employed a popular non-
linear multiclass support vector machine classifier for action
classification. This method learns I(I-1))/2 binary support vec-
tor machine (SVM), where [ is the number of unique action
classes by using one-versus-one coding design model. It im-
proves classification accuracy for multi-class classification by
minimizing the aggregation of losses for P binary learner.

— . |mlp| ZZ=1 g(mlps sp)
[ = arg min >
! sz] |mlp|

)

where m is the one-versus-one coding design matrix with ele-
ment my,, s, is the predicted classification score for the positive
class for learner p and g() is the binary loss function.

3. Experimental Results

To determine.the ‘effectiveness of our method, we evaluate
our approach on.four publicly available datasets i.e. UCF50
(Reddy and"Shah, 2013), UCF11 (Liu et al., 2009), UCF-Sports
(Rodriguez et al,, 2008) and the KTH (Schuldt et al., 2004)
datasets. For interest point detection and description, we use
default parameters settings provided by Laptev and Lindeberg
(2003) and (Scovanner et al., 2007).

KTHris a standard dataset for recognizing actions in simple
scenarios. It is captured in a controlled environment with sim-
ple background and holds camera motion and zooming effect
in few videos (Mukherjee et al., 2011). It has 6 action classes
i.e. walking, jogging, running, hand waving, hand clapping and
boxing. These actions are performed by 25 actors in 4 differ-
ent environments. We used standard training and testing split
as described in (Schuldt et al., 2004) and used by most state-
of-the-art methods. Video sequences were divided based on the
subjects, 16 subjects video sequences were used for training
while the remaining 9 subjects video sequences were used for
testing.

UCF-Sports is captured in a more realistic environment than
KTH dataset since it contains 150 video sequences taken from
real broadcast sport events. UCF-Sports comprises 10 action
classes including weight-lifting, swimming, horse riding and
golf-swing. It is captured with cluttered backgrounds, different
viewpoints, occlusions, motions and scale discontinuities. We
use a Leave One Out cross validation method for evaluation
purpose following Rodriguez et al. (2008).

UCF11, previously known as YouTube action dataset, and
UCF50 (an extension of UCFI11 dataset) are captured in
realistic environments with large variations in viewpoints,
backgrounds, camera motions, object appearances and poses.
UCF11 and UCF50 contain 11 and 50 action categories respec-
tively. For each action class, video clips are grouped into 25
groups each containing at least 4 video clips. Each group shares
some similar features, like similar environment, same actor and
similar viewpoints. As proposed by Rodriguez et al. (2008) and
Reddy and Shah (2013), a Leave One Group Out evaluation
method is used for evaluation purposes for both datasets.
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Fig. 8. Performance evaluation using different distance measures for neigh-
bor calculation for the KTH dataset.

3.1. Performance Evaluation

Optimization of parameters involves two different parame-
ters: the number of clusters k and the number of nearest neigh-
bors N for creation of the expression codebook. We evaluate
our approach by varying k and then N for the KTH dataset. ‘As
shown in Table 1 accuracy increases with respectto an increase
in the number of clusters K up to k=300, whereas N is constant,
i.e. N=2. Then, accuracy plateaus while execution time carries
on increasing.

For optimization of N, we performed different experiments
with k=300 on the KTH dataset. As illustrated in fig. 7, con-
struction of a large number of nieighbors leads to creation of
non-relevant neighbors, which’ may, contain erroneous infor-
mation resulting in a loss-of performance. While values of N
between 1 and 6 achieve accuraci€s above 99%, the best per-
formance is produced for N=2. Note that the case N=0 corre-
sponds to performance of,the’'standard bag of words approach.
Its lower accuracy demonstrates the added value of the usage of
visual expressions.

Fig. 9. Positive results for fencing action (UCF50 dataset) in non-occluded
and occluded environment

Table 1. Average accuracy performance and execution time w.r.t to differ-
ent number of cluster (k) for KTH dataset.

K | Accuracy | Time(Secs)
50 94.99 90.5
100 96.22 195.88
200 98.78 362.12
300 99.51 525.47
400 99.51 703.65
500 99.51 870.39
600 99.51 1020.99

Fig.8 shows performance results<by ‘using different dis-
tance measures for calculation of N nearest néighbors in space
time domain for the KTH dataset/ We evaluate the per-
formance of our proposed approach using four different dis-
tance measures, i.e. Mahalanobis, Euclidean, Hamming and
City block distances with, visual” expression codebook size
T=N*k*1=2*300*6=8600 for K’TH dataset. As shown in fig.10,
the Mahalanobis_distance measure shows better results with
99.51% average accuracyfor the KTH dataset.

The propesed method also shows some degree of tolerance
to occlusion invrealistic environments. Fig 9 shows examples
of positiveiresults in an occluded environment for the fencing
action from the UCF50 dataset. As proposed, BoE only consid-
ers the spatio-temporal neighborhood of each visual word by
discarding the information related to other visual words repre-
sentation, therefore focusing on the individual contribution of
each expression and enhancing its discrimination power in an
occluded environment. As a result, each visual expression is a
representation of the local information of an independent patch
making it relatively invariant to occlusion

Fig. 10 shows the performance of our method, with k=300
and N=2, on the UCF50, UCF11, UCF Sports and KTH
datasets in terms of confusion matrix. It shows that our ap-
proach achieved reasonable performance on most of the action
classes for both simple and realistic datasets. The decrease
in performance in realistic scenarios is expected since three
datasets, i.e. UCF Sports, UCF11 and UCF50, contains some
unwanted actions in the background, which can mislead clas-
sifiers. For the KTH dataset, there is only confusion between
walking and jogging class which is intuitive because of the in-
ter class similarity between both actions.

3.2. Comparison with state-of-the-art

We conclude the experimentation and results discussion with
comparison of our approach with state-of-the-art methods. As
shown in Table 2, our method outperforms other mentioned
methods in terms of average accuracy for UCF Sports, KTH,
UCF11 and UCF50 datasets. It should be noted that BoE per-
formance was optimized for KTH dataset as discussed in sec-
tion 3.1. BoE outperforms MultiScale Neighborhood features
(MONFs) based approach for UCF Sports and KTH dataset
(Yang et al., 2015). MONFs was formed by concatenating Sin-
gle scale neighborhood features (SONF). Improved results were
obtained for all mentioned datasets (i.e. KTH, UCF Sports and
UCF11) as compared to BOVW when compared with results



Table 2. Comparison with state-of-the-arts methods for UCF-Sports, KTH, UCF11 and UCF50 Datasets.

Dataset Paper Method Results
Our Bag of Expression (BoE) 97.33%
Peng and Schmid (2016) Multi Region two stream R-CNN 95.74%
UCF Sports Abdulmunem et al. (2016) Bag of Visual words 90.90%
Wang et al. (2013) Dense Trajectories and motion boundary descriptor | 88.00%
Yang et al. (2015) Multi-scale oriented neighborhood features 91.80%
Kovashka and Grauman (2010) | Hierarchical Space time neighborhood features 87.27%
Our Bag of Expression (BoE) 99.51%
Abdulmunem et al. (2016) Bag of Visual words 97.20%
KTH Wang et al. (2013) Dense Trajectories and motion boundary descriptor | 95.00%
Gilbert et al. (2011) Mined Hierarchical compound features 94.50%
Yang et al. (2015) Multi-scale oriented neighborhood features 96.50%
Kovashka and Grauman (2010) | Hierarchical Space time neighborhood features 94.53%
Our Bag of Expression (BoE) 96.68%
Wang et al. (2011) Dense Trajectories 84.20%
UCF11 Yadav et al. (2016) Motion Boundaries and Dense Trajectories 91.30%
Mota et al. (2013) Tenser Motion Descriptor 75.40%
Liu et al. (2009) Bag of visual words 71.20%
Our Bag of Expression (BoE) 93.42%
Duta et al. (2017) HMG + iDT Descriptot 93.00%
UCF50 Peng et al. (2016) Bag of Words and Fusion Methods 92.30%
Wang et al. (2016) Dense Trajectories 91.70%
Wang et al. (2013) Dense Trajectoties and motion boundary descriptor | 91.20%

presented in (Abdulmunem et al., 2016) and (Liu et al., 2009).
Performance is improved by around 2% for UCF Sports and
KTH datasets and, for UCF11 and UCF50, we significantly im=
prove the results by around 5% and 0.42% respectively.

4. Conclusion

Bag of words has proved to be a promisifig model for real
word action recognition problems and it i§preferred by many
authors due to its simplicity and lackf any:requirement for
preprocessing input data. In this paper, we have proposed an
extension of BOW, calling it Bag of Expression, which includes
neighborhood relationship information between words in space
and time domain. It utilizes/the existing strengths of BOW and
learns class specific clusteringfalgorithm by learning neighbor-
hood information that(is most diScriminative for given action
class. BOE enables some degree of view independence and
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provides. tolerance to occlusion as it describes neighborhoods
through independent pairs of neighbors containing local spatio-
temporal information. We demonstrated the capabilities of our
approach for action classification in both simple and realistic
scenarios and have shown that BOE outperforms recent state-
of-the-art methods. For future work we will explore the use of
deep learning methods to learn the impact of space time neigh-
borhood information for efficient action recognition.
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